ESC-TR-2006-063

Project Report
PCA-Kernel-3

Polymorphous Computing Architecture (PCA)
Kernel Benchmark Measurements on
the MIT Raw Microprocessor

R.J. Haney
J.M. Lebak
M.A. Alexander
. Chan

P.A. Jackson
E.L. Wong

14 June 2006

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Prepared for the Defense Advanced Reseavch Projects Agency
under Air Force Contract FA8721-05-C-0002.

Approved for public release; distribution is unlimited.

This report is based on studies performed at Lincoln Laboratory, a center for
research operated by Massachusetts Institute of Technology. This work was sponsored
by the Defense Advanced Research Projects Agency/IPTO under Air Force Contract
FA8721-05-C-0002.

This report may be reproduced to satisfy needs of U.S. Government agencies.

The ESC Public Affairs Office has reviewed this report, and it is releasable to the
National Technical Information Service, where it will be available to the general
public, including foreign nationals.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

N’

Admidistrative Contracting Officer
Plans and Programs Directorate
Contracted Support Management

Non-Lincoln Recipients

PLEASE DO NOT RETURN
Permission has been given to destroy this
document when it is no longer needed.

Massachusetts Institute of Technology

Lincoln Laboratory

Polymorphons Computing Architecture (PCA) Kernel Benehmark

Measurements on the MI'T Raw Microprocessor

R.J. Haney
J. M. Lebalk
VI AL Alexander
H. Chan
P A Jackson

E L Wong
Gronp 102

|’|'ujc'<'l Ht'lml'l PCA-Kernel-3

FE June 2006

\pproved for public release: distribution is nnlimited.

Lexington Massachnsetts

Acknowledgments

This work was sponsored by the Defense Advanced Research Projects Agency’s Polymorphous
Computing Architecture Program, directed by Mr. Robert Graybill.

A Raw board for the use of this project was provided by the Computer Architecture Group at
the Massachusetts Institute of Technology and by the Information Sciences Institute East of the
University of Southern California. We are grateful for the help of Anant Agarwal, Paul Johnson,
Jason Miller, Michael Taylor, and David Wentzlaft at MIT. and Chen Chen and Steve Crago at
USC/ISI East, in obtaining and setting up the board.

Hank Hoffmann of MIT developed the methodology of programming Raw as a systolic stream-
ing machine in his Master’s thesis at MIT. His methodology heavily influenced this work.

Jinwoo Suh of USC/ISI East contributed results for an optimized FIR filter implementation for
Raw.

The authors acknowledge contributions from the MIT Lincoln Laboratory PCA team, including
Janice McMahon, Robert Bond. Glenn Schrader, Bill Coate, Jim Daly, and others.

1"

TABLE OF CONTENTS

1. Introduction

2. Methodology
2.1 Kernels and Data Sets
2.2 Metrics
2.3 Measurement Platforms

3. Signal Processing Benchmarks
3.1 FFinite Impulse Response Filter Bank
3.2 QR Decomposition
3.3 Singular Value Decomposition
3.4 Constant False Alarm Rate Detection

4. Communication Benchmark: Corner Turn
4.1 Algorithm Description
4.2 Implementation on Raw
4.3 Benchmark Results
4.4 Raw Static Network Implementation

5. Information and Knowledge Processing Benchmarks
5.1 Pattern Matching
5.2 Database Operations
5.3 Graph Optimization via Genetic Algorithm

6. Raw Kernel Benchmark Observations
6.1 Board-Simulator Comparison
6.2 Development Effort
6.3 Baseline Results and Platform Comparison

7. Conclusions

APPENDIX A - Testbed hardware design
A.l Introduction
A.2 Hardware Setup
A.3 Soltware Design
A4 TFrmware Design
A5 Summary

APPENDIX B — Testbed soltware design
B.l1 Introduction
B.2 Tutonal
B.3 Overview
B.4 Tasks

(TS B US ER TV R V]

16
29
40

45
45
45
46
48

49
49
5’)

59

63
03
05
66

71

™~

3
45
76
76
78

79
79
79
Sl
83

B.5 Testbed 87
B.6 Map Grammar 93

REFERENCES 97

Vi

Figure
No.

13
14
15
16
17
18
19
20
21

D)

23
24
25
26
27
28
29
30
3

32
33

34

LIST OF ILLUSTRATIONS

Identilication ol tiles and ports on the Raw chip.

Serial time-domain FIR filter operations.

Usage of a 4 x 4 Raw chip for performing a time-domain FIR filter.
Parallel time-domain FIR filter operations.

Usage of a 4 x 4 Raw chip for performing the FFT.

FFT Butterlly operations.

FET Base-4 reversal.

Time-domain FIR filter results.

Frequency-Domain FIR Filter results.

Matlab code Tor computing Fast Givens QR.

Usage of a 4 x 4 Raw chip lor performing complex QR Decomposition.
Usage of an arbitrary sized 2 x R Raw chip for performing complex QR
Decomposition.

High-level pseudocode ol Fast Givens QR implementation for Raw.
Storage of R after QR computation.

Storage of (Q alter QR computation.

Data How and computation that occurs while computing Fast Givens rotations.

Data How and computation that occurs while applying Fast Givens rotations.
Data low and computation for computing the final ym — n columns ol Q).
QR results using a4 x 4 Raw.

QR results using a 8 x 8 Raw.

QR scalability results: 4 x 4 vs. 8 x 8 Raw.

Usage of a 1 x 4 Raw chip for performing the complex Stream Hestenes SVD.

High-level pseudocode of the Stream SVD implementation for Raw.
SVD data flow Tor computing Jacobi rotations for a boundary case.
SVD data flow for computing Jacobi rotations for a non-boundary case.
SVD data flow Tor applying Jacobi rotations Tor a boundary case.
SVD data flow Tor applying Jacobi rotations lTor a non-boundary case.
Stream Hestenes SVD data flow for a complete block sweep.

SVD results using a 4 x 4 Raw.

Stiding window in CFAR detection.

CFAR tile allocation on MIT Raw.

Performance ol CFAR on the MIT Raw.

Corner turn results for square matrices on a single tile of Raw.

Corner turn results for square matrices on 16 tiles of Raw.

18
19

19
21

D0

flal

25
24
25
20
27

29

36
37
38
39
40
41
42
43
44
45
40
47

‘N
§%)

N ‘o o ‘n
~N SN

59
60
o1

Corner turn throughput for the G4, Xeon, and Raw board.

The pattern match Kernel mapping.

Pattern match throughput on Raw with 512 hibrary patterns.

Pattern match efticiency on Raw with 512 library patterns.

Usage of a 4 x 4 Raw chip for performing Database Operations.

Data How for performing the search Database Operation.

Data flow for performing the insert Database Operation.

Data flow Tor performing the delete Database Operation.

Database throughput results.

Database latency results.

Database latency results when performing search operations only.
Throughput of the genetic algorithm benchmark.

QR Decomposition results using the Raw Board and the Raw cycle-accurate
simulator.

QR Decomposition results using the Raw Board. cycle-accurate simulator,

and the cycle-accurate simulator with modified DRAM read and write penalties.

Achieved throughput of kernels on defined data sets on the Raw board.
Average throughput for each kernel on the Raw board and on the Raw board
scaled to 425 MHz, compared to the G4 and Xeon.

Average throughput per unit power for cach kernel on the Raw board com-
pared to the G4 and Xeon.

Achieved data set stability for kernels on the Raw board compared with the
G4 and Xeon.

PCA testbed system components.

WildStar 11 Processing Element (PE) 0.

WildStar Data Port Daughter Card 1/0 Processing Efement (PE).

Raw Handheld Left Expansion FPGA.

The client side of the testbed software shown running the CFAR kernel.

The host platform’s side of the testbed software.

A sample task map with two tasks: CFAR and Genetic Algorithm.

A sample platform map for a testbed that supports four different platforms.

Methods used to send data to the various Raw instantiations.

vill

43
50

51
51
53
54
55
50
57
o
58

o1

04

04
67

68

68

6Y
74
77
74
78
82

82

LIST OF TABLES

Table
No. Page
I Comparison of SVD Workloads. 39
2 Lines of code for four FIR hlter implementations. 65
3 Processor Parameters 606
4 Kernel stability numbers for the Raw, G4, and Xeon. 70
5 Average Performance and Performance Per Watt for the Raw. G4, and Xeon 70

1. Introduction

The DARPA Polymorphous Computing Architecture (PCA) program is a research initiative aimed
at developing new computer architectures with a high degree of flexibility. Unlike current computer
architectures that are rigid in nature, PCAs will have the capability to adapt (“morph™) to match
the problem being solved. This flexibility will allow higher overall system performance in a broad
range of applications.

MIT Lincoln Laboratory has defined a set of kernel benchmarks for the PCA program [11}.
The kernel-Tevel benchmarks have been chosen to stress both computation and communication as-
pects of the architecture. The particular benchmarks chosen are based on the frequency of their use
in current and future applications. They are drawn from the areas of signal and 1mage processing,
communication, and information and knowledge processing. Each of these areas imposes dif-
ferent processing requirements on the architecture in terms of operations performed and memory
bandwidth required.

This document describes a set of measurements of the PCA kernel benchmarks on a proto-
type PCA chip, the Raw processor developed by MIT. Chapter 2 describes the measurement plat-
form. the metrics. and the test methodology in more detail. Chapters 3, 4, and 5 describe results
for, respectively, signal processing, communication, and information and knowledge processing
benchmarks. Finally, Chapter 6 gives a summary of the kernel benchmark measurements. Where
appropriate, we compare these measurements to earlier measurements on the PowerPC G4 [10] as
well as to measurements on an Intel Xeon server.

2. Methodology

This report provides measurements for the kernel benchmarks defined by MIT/LL [11] on the MIT
Raw processor. We will be comparing these results with those previously taken on the PowerPC G4
embedded processor [10], and with results obtained on an Intel Xeon server. In this section, we
describe the kernels, data sets, metrics, and platforms in more detail.

2.1 Kernels and Data Sets

The kernel benchmarks were distilled from a survey of Department of Defense applications.
They fall into three broad categories: signal and image processing (SIP), communication, and
information and knowledge processing (IKP). In general, one could characterize the operation
performed by the SIP kernels as regular and predictable, and the operations performed by the 1KP
Kernels as data-dependent.

There are four SIP kernel benchmarks: finite impulse response (FIR) filter, QR factorization,
singular value decomposition (SVD). and constant false-alarm rate (CFAR) detection. The com-
munication benchmark is the corner turn. The 1KP Kernel benchmarks are pattern match, genetic
algorithm. and database operations.

For each benchmark, a set of problem sizes are defined in the original kernel benchmark re-
port | 1'H]. We report performance on these sizes in Section 6.3. In each kernel's section, we vary
parameters at a finer level of granularity, in order to understand in more detail the eftect of different
data set sizes on performance. Throughout this section, we refer to the kernel by the index &, and
refer to particular data sets for a given kernel as d;, where ¢ = 1,2,..., Ng, and Ny varies from
Kernel to Kernel.

2.2 Metrics

The major metric of interest for each problem size is the total time or latency. L (k. d,). to
perform kernel & for a data set size d,;. In most cases, this time includes the time to send data into
the chip from outside.

Metrics that we calculate from latency include throughput. efficicncy, and stability as defined
in the original benchmark report [1'1]. Workload values for each kernel benchmark are specitied in
that report: these values are used in the computation of throughput. We compute performance per
unit power from the throughput values.

2.3 Measurement Platforms

2.3.1 Raw board

The Raw board used for this project contains a single Raw chip consisting of’ 16 Raw tiles. Each
tile is identified either with an (., y) address pair or with a single identifying number. The chip has
sixteen ports numbered zero though fifteen through which it communicates with the outside world.
The numbering of the tiles and ports is shown in Figure 1.

0 1 2 3
5] o [| 1 || 2 || 3
(0,0) (1,0) (2,0) (3,0)
l l [l
14 4 | S | | 6 | | 7
(0,1) (1,1) (2,1) (3,1)
[l l I
a8 L e [|10]} 0
loa [0 []ey][] 62
l l | l
12 12 | | 13 | | 14 | | 15
(0,3) (1,3) (2,3) (3,3)
11 10 9 8
Figure 1. Identification of tiles and ports on the Raw chip.

Each tile is capable of performing one operation per clock cycle and includes a 32-Kbyte level-
I cache. The default clock rate for the chip is 100 MHz. This reflects the constraints of the current
board firmware. The board components are designed to run at up to 300 MHz with appropriate
firmware. With suitable external hardware, MIT estimates that the current prototype Raw chip
could be clocked at rates up to 425 MHz [13]. In the tests described n this document, the chip
runs at 100 MHz and we calculate its peak performance as 1.6 Gflop/s.

The tiles on Raw are connected by two static networks and two dvnamic networks. One of
the dynamic networks is used by the chip for memory accesses: the other i1s available to the pro-
grammer. The term “static™ applied to the networks implies that the programmer must set up the
communication pattern used by the switch in advance of 1ssuing the commands Tor communica-
tion. Once programmed. the static networks are genevally faster than the dynamic networks. For
more information see Taylor et al. [20].

The Raw board puts the wnterface to memory only on the cast side of the chip (ports 4-7). It
also includes an expansion connector that gives access to the north and south sides of the chip.
In order to test Raw in a streaming situation, MIT/LL built external hardware to move data nto
the chip from the expansion connector. An Annapolis Microsystems WildStar-2 board serves as
a buffer and a controlter for the interface. The interface streams data into ports 0. 3. 8. and {1 of
the Raw chip. using streaming data port cards connected to the Annapolis board. and a firmware
design referred to as the speed gasker on the Raw board’s Virtex-11 3000 FPGAs. More details of
the testbed hardware can be found in Appendix A. We refer to this mterface as the “high-speed
input/output”™ or HS10.

The Raw board also has a USB interface that can be used for 1/0 for data sizes that are too large
for the buffers on the HS10 board. We found this interface to have a high latency and thus tried to
avoid using it. The only situation where its use could not be avoided was in the case of the CFAR
kernel. which defined data sets that were too large Tor HS10. For more details, see Section 3.4,

The Raw chip was measured to consume 2.5 A when operating at 100 MHz and a core voltage
of 1.8 V while running the “vpenta™ benchmark from the SPEC "92 benchmark suite [9]. We round
upward and use a figure of 5 W for the typical operating power of the Raw chip at 100 MHz.

2.3.2 Raw Simulator

MIT provides a cycle-accurate simulator for Raw that was used in the early stages of this
project. A major benefit of the simulator is that it allows us to scale the number of tiles in the Raw
chip and to experiment with other board designs, including ones where all sides of the chip have
an interface to memory. Use of the simulator also eases development, since there is only one Raw
board available at MIT/LL.

While the simulator is presented by MIT as being an accurate model of the Raw chip. we have
found that it does not accurately model the board. Our comparison of the board and the simulator
can be found in Section 6.1. Despite these disagreements between the board and simulator, the
simulator still has a great deal of value for showing the potential of the Raw chip. We describe
experiments on the Raw simulator scaled to an array of 64 tiles for the QR factorization kernel in
Section 3.2 and for the pattern match kernel in Section 5.1. These experiments show the potential
of Raw’s architecture as feature sizes continue to shrink.

N

2.3.3 G4 Platform

As previously described, the target platform for the G4 measurements is a smgle node of a
multi-node Mercury computing system [10]. The system occupies a single VME chassis and has
sixteen compute nodes. Each node 1s a 500 MHz Motorola PowerPC G4 processor, model 7410,
with a 32 kbyte level-1 cache on-chip and a 2 Mbyte L2 cache connected through a 250 MHz
bus [12]. Each node has 256 Mbyte of “local™ DRAM, connected through a 125 MHz bus. The
nodes are connected through a RACE++ crossbar network, though this is not used in any of the
benchmarks. The daughter-cards used in these systems were first announced by Mercury in March
of 2002. At the time of this report, the platform and the processors are approximately four years
old.

The PowerPC G4 includes a vector processing unit referred to as the AltiVec unit [14]. This
unit operates in paratiel on data in {28-bit registers as if they were multiple smaller data registers.
Operations are performed in a SIMD (single instruction stream, muluple data stream) Fashion. For
our purposes, this means that each register s treated as four single-precision (32-bit) Hoating-point
numbers. Since the AluVee Roating-point units can retire four multiply-add instructions in a single
cycle, we calculate its peak performance as 8 Hop per cycle times the clock speed of the processor.
or 4 GHopl/s.

The hardware specification for the Motorola 7410 processor gives a typical power dissipation
of 5.3 W when running “typical benchmarks™ and a maximum power dissipation of 1.3 W when
runmng a set of instructions contrived to keep the processor “maximally busy™ [15]. When com-
puting achieved performance per unit power, we use the rypical number rather than the maximal
number. This decision follows from the efficiency numbers that our benchmarks achieve, which
are Far from 100% utilization of the processor.

2.3.4 Xeon Platform

The target platform for the Xeon measurements is a single node of a Delt Powerl=dge 2050
Server. This system contains two Intel Xeon processors operating at 2.8 GHz in a 2U rack. The
2.8 GHz Xeon processor was introduced by Intel in November of 2002, making 1t shightly newer
than the G4 processor previously described. 1t is a newer process technology generation (0.13 mi-
cron) than the G4 (0.18 micron). 1t is also targeted at the server market. rather than the embedded
market.

Each processor has an 8 kbyte level-1 cache and a 512-Kbyte level-2 cache, both located on
the chip. The Xeon includes vector instructions referred to as streaming SIMD extensions or SSE
mstructions. These have a similar function to the AliVec instructions on the G4, and i many
cases there are roughly equivalent instructions on the two processors. However, unlike AltiVec,
SSE does not include a multiply-add instruction. Thus we calculate the peak performance of the
Xeon as 4 flop per cycle times the clock rate or 11.2 GHop/s. We use a power consumption figure
of 74 W for the Xeon, reliecting Intel’s cooling guidance Yor the chip [8].

6

3. Signal Processing Benchmarks

The four signal processing kernels defined for PCAs are the FIR filter, the QR factorization, the
SVD, and CFAR detection. Each presents a different set of characteristics in terms of operation
counts and memory references. The results for these kernels are respectively discussed in Sec-
tions 3.1, 3.2, 3.3, and 3.4,

3.1 Finite Impulse Response Filter Bank

3.1.1 Algorithm Description

The FIR filter benchmark measures the performance of & bank of FIR filters. Each FIR filter
m.m € {0,1,..., M — 1} , has a set of impulse response coefticients w,, k], & € {0,1,.... K — 1}.
If the length of the input vector is N, the output of filter m. y,,,. is the convolution of w,, with the

nput .r,,:
K1
Y] = Z Tt — k|w,,[k) fors ={0,1,..,. 8 1% (1
k=0
Direct implementation of equation I 1s referred to as a time-domain implementation of the FIR.
Another common implementation uses fast convolution with the fast Fourier transform (FFT): this
is referred to as a frequency-domarn implementation. The most efficient implementation depends
on various factors including the size of the filter response vector. For the Raw Processor. we
have chosen to base the frequency-domain implementation on a radix-4 FET. For a description and
example of a radix-4 FFT, see [22].

3.1.2 Implementation Features
Time-Domain FIR Filter

Serial Implementation. To understand the parallet implementation of the time-domain FIR
filter kernel, wtis helpful to first be familiar with a serial implementation. The time-domain FIR
filter kernel consists of vector-scalar multiplies of the input sample length NV vector by each of the
i filter elements. This results in m vectors (M, 0 <1 < m) of length N. These vectors are then
shifted right 7 elements. Once shifted, the vectors are accumulated to calculate the final result.
Figure 2 shows the flow of serial time-domain FIR filter operations.

Yarallel Raw Implementation. The symmetric stream mapping shown n Figure 3 provides
the ability to perform two parallel complex time-domain FIR filters. This mapping requires the four
corner tiles (hereafter referred to as memory tiles) to supply streaming data and manage memory
for the Ruw processor. The remaining 12 tiles (hereafter referred to as the computation tiles) will
perform the complex time-domain FIR computations.

The parallel Raw time-domain FIR filter kernel is similar to the serial kernel implementation
described above. Using the mapping in Figure 3 however, it is possible to do six of the vector-
scalar multiplies in parallel. After the imtial six vector-scalar multiplies have been performed, the
results are accumulated as they stream down towards the lower memory tiles. Once arriving at

n n
. - [- >
Filter o0 x CIITICD .0 - EE— (HDEAE
agp- e O x OO -0 - . N R O
- I i o x e
= O - I - . [EEEEETD O
O - - CLITIIT] O
O - I - i s
v 0 - . =
O - N - N RN . @
Result
'l >
m+n-1
Figure 2. Serial time-domain FIR filter operations.
vy v v v
I 5 ol ;i 15 S
5 et
v v
b o oo
1 |
T)]
v v
=i | <
|
RN <« e W BT
Result 4 N } Result
Compute Processor Memory Processor

Figure 3. Usage of a4 x 4 Raw clip for performing a time-donain FIR filter. The four
corner (in vellow: tiles 0, 3, 12, and 15) tiles are used for memory and VO. The remaining

tiles are used for computation.

the memory tiles, the sum is stored i an mtermediate vector in memory. The next six parallel
results are computed. and again accumulated as they stream down towards the lower memory tiles.
This time, the intermediate result index is shifted right six elements (to compensate for the previous
intermediate result) before being accumulated with the previous intermediate vector. In general, an
index for an intermediate vector arriving at the lower memory tiles is shifted six elements for cach
previous intermediate vector. 1t is then accumulated with the summation thus far. This procedure
is conducted unul each of the filter elements have been accounted for. Figure 4 shows the flow of
parallel ume-domain FIR filter operations.

Frequency-Domain FIR Filter

The following section will discuss the three major components of the frequency-domain FIR
filter:

< n » - n »
Filter .. » O x OO0 - - N s
A} 0= - N _-
O- I E “I
7l O - I N III.II.I,‘
O- I N ﬂ.i
O - IS W (16 0% b 0 o 0
B Intermediate Result 1:
6+n-1 >
.................................. P P et e L E Ll S
O - BN ... EEEENE. . i3
0 = (NN - : ﬁEEEK:D;f'
] PRIBINE EB. 7
Intermediate Result 2: I P
< 6+n-1 >
m/é v Intermediate Result 1
Intermediate N . M (nicrmediate Result 2
Results " I
Final Result:
< >
m+n-1

Figire 4. Parallel time-domain FIR filter operations.

[. an FET of the input,
2. an clement-wise multiply of the FFT result and the filter, and
3. an IFFT of the element-wise multiply result.

We will also discuss optimizations made to the FIR filter including loop unrolling and internal
twiddle factor consistencies.

Similar to the time-domain algorithm, the symmetric mapping displayed below in Figure 5
provides the ability to perform two parallel frequency-domain FIR filters simultaneously. This
mapping also requires the four corner memory tiles to supply streaming data and manage memory
ior the Raw processor. The 8 tiles in the middle columns (hereafter referred to as the computation
tiles) will perform the FIR computations. The two center tiles on the left and right sides will be
used to buffer and store intermediate butterfly results.

Fast Fourier Transform. The outline of a FFT of length N can be viewed as:

for (log N phases)
for (N / 4 butterflies)
Butterfly ()
end
end

9

Even Phase Data Flow Odd Phase Data Flow
FFTO FFT 1 FFTO FFT 1
o — R ‘ G____ =

) Input Stream |

=) Result Stream

] Compute Tiles
Memory and
1/0 Tiles

B Memory Tiles ‘ ? ?

Fignre 5. Usage of a 4 x 4 Raw clup for performing FITT. The fonr corner tiles (in
white: tiles 0. 3, 12, and 13) are used for memory and l/O. The twvo middle tiles on botli the
east and west sides of the clip (in grev: tiles 4. 7, 8, and 11) are used for memory. The
remaining 8 center tiles (in blue: tiles 1, 2, 5, 6, 9. 10, 13, and 14) are nsed for computation.

The main function in an FFT is the butterfly operation. The butterlly operation consists of the
input samples being multiphed by twiddle factors. A twiddle Tactor has the general form:

wp = 4N (2)

The length-N FFT consists of log, N phases of N/ butterllies per phase. Each butterfly takes
Tour inputs and computes four outputs.

In the inital even phase (see Figure 5), input samples are streamed into the computation tiles
in the order they are required to perform butterfly operations (to be described in the following
section). As they are streamed into the four computation tiles, each tile computes one ol the four
intermediate results. The results are sent to the bottom memory tiles (tiles 8 T 12, and 15) as
depicted by the result stream shown in the even phase data How ol Figure 5.

Once each set of butterflies has been computed in the inital phase, data strides are recomputed
on the bottom Tour memory tiles (tles 8, 11, 12, and 15). The results from the initial phase then
become inputs to the subsequent phase, and are streamed up into the compute tiles in the order they
are required to perform butterfly operations. Again, as they are streamed into the four computation
tiles, each tile computes one of the four intermediate results. The same process described above is
performed, only this time the final destination Tor the results will be the top Tour memory tles (tifes
0, 3,4, and 7). This data How is the odd phase depicted i1 Figure 5. This process is conducted for
each phase. When all the phases are completed, the resuft 1s a vector whose elements are stored in
hase-4 reversed order. The FFT result will always reside on the top two memory tiles (tiles (0 and
S

Butterfly Operation. In a radix-4 FET implementation, a butterfly operation requires 4 input
elements and a series of twiddle lactors. For example. in phase zero of a length-16 FFT, butterfly
zero performs the following computations using elements g, 4, xg and iy ¢

10

(y
.1.(1) = (.1.(:“?(1*0*0) 2, .1,‘(:“"(4*0*1 2 3 “' (4%0%2) + 1 I*Od)) " “'0 53
.l'_] = (.1,0“‘(4*1*0) + 1! “‘(4*1*1) _+_.1,()“,(-1*h2) +.1,0’ “,(-l*h.l)) = “'() (4)
1 0 8 12
‘ (Ax %" HeDs]
T = (1011'“*2*0) - .1'_111'(4*2*1) - .z'llz'“*z”) + Y, w23y w0 (5)
1 3x1 342 34
1y = (2w + g3 4 gl 4 ol 013 0 (6)

where w are twiddle factors and ¢ are input and output elements whose superscript represents
the number of phases completed. Each butterfly operation calculates four butterfly elements that
involve the sum of four product terms.
The exponent of the twiddle factors within the parenthesis 1s calculated as:
N

R -—I,-) * (Buuerfly Element) * (Product Term Index). (7)
adix

To calculate the power of the twiddle factor outside the parenthesis, we use:

Butterfly

y lph ause

floor(). (8)

The twiddle factors for cach of the elements in the hinal phase should all be one. If we refer o
the four inputs to a butterfly as ¢ , &y, ., and xy4 and the four results as {wg. 0 < & < 3}, then a
general formula for radix-4 butterfly computation b in phase p is:

Kl ! 3 N g N o ha? N ooty b
o ' = = {2 "u'(T *ke0) + afw's I .1'{.'11'(3R .I'f;ll'(1"""”) * AP (9)

Figure 6 depicts the ininal buterfly operation in both phd\L zero and phase one for a 16 sample
input. The stride between input elements in pha\L zero is 7. As we move from one phase to the
next, the stride between input elements is always 7 that of the stride from the previous phase. The
stride in the final phase is always one. The selection of sets of hulluﬂy inputs varies from phase to

phase. For a more in-depth description of butterfly operations, see (22

Element-Wise Multiply. As noted above in the Butterfly section, the external twiddle factors
for each of the elements in the final phase are all one. This means there are N complex operations
where intermediate values are being multiplied by one. We can use this to our advantage by
embedding the element-wise multiply of the FIR filter into the final phase of the FFT. During the
final phase of the FFT, rather than calculating the external twiddle factor (always equal to one), an
mdex is calculated to fetch the appropriate hiter value from memory. This value is then used in
place of the twiddle factor to complete the butterfly operation.

The portion of the filter required by a given tile is stored in memory in a base-4 reversed order
during itialization. This corresponds to the output of the FFT, which is also stored in base-4
reversed order.

Phase 0, Butterfly 0 Phase 1, Butterfly 0

16 point input

16 point base4 -reversed result

Figure 6. Initial butterfly operation in phase zero and phase one for a 16 sanple input.
o . . . ; A ; :
The stride between elements in phase zero is 4, calculated from 3. In phase one, the swride is
reduced to ll thar of the previous phase’s stride.

Inverse FFast Fourier Transform The IFFT implementation is very similar to the FET de-
scribed above. We note three major differences. One major difference is that the input indices
to the IFET are base-4 reversed. To compensate for this, during the initial phase of the 1FIFT, the
normal indices arc not used to fetch samples from memory for the butterfly operations. Instead,
we use the indices™ pre-computed base-4 reversed values to index the appropriate samples. These
samples are then streamed into the computation tiles. Figure 7 shows an example for a {0 sample
input. Note that because of the base-4 reversed input to the 1FIFT. the result will be base-4 reversed.

Another difference between the FET and the IFFT implementations is the calculation of twiddle
factors. The values used in the IFFT are the conjugates of the values used in the FFT. Based
on performance measurements, reusing the FFT twiddle factors and multiplying the imaginary
components by negative one is more efficient than fetching new conjugated values from memory.

The tinal difference between the FET and IFFT is that the IFFT requires each element to be
multiplied by { after the last phase of butterfly computations. To optimize this, the multiply
operation has been embedded into the butterfly weight mukltiplication in the final phase as was
done with the element-wise multiply in the FFT routine.

FIR Optimizations

It is necessary to make three significant optimizations to the FIR filter in order to improve
performance. The first 1s motivated by the consistency in all of the internal twiddle factors. The
formula for the exponent of the internal twiddle factors is depicted in Equation (7). Because of the
i{_(.::.l_l.f component i Equation (7). the internal twiddle factors are the same no matter the current
phase. butterfly, or butterfly product. 1t is also true that each of the twiddle factors falls on an axis
of the unit circle. The first twiddle factor falls on (1, 0). the second on (0, 1), the third on (-1, 0),
and tinally the fourth on (0, —1). Therefore the multiplication of the internal twiddle factors can be

Normal indices for Base-4 reversed indices

a 16 sample input: for a 16 sample input:
Base 10 Base 4 Base 4 Base 10

0 00 00 0

4 10 01 1

8 20 02 2

12 30 03 2!

1 01 10 4

5 11 11 5

9 21 12 6

13 31 13 7

2 02 20 8

6 12 21 9

10 22 22 10

14 32 23 11

<, 03 30 12

7 13 31 i3

11 23 32 14

15 33 88 k5 |

L

Figure 7. Normal indices for a 16 sample inpur and their base-4 reversed equivalents.

replaced with a sequence of equivalent additions and subtractions. Equation (4) can be expressed
as the following:

7= (Lg.r + 140 — xg.r — X19.0) * w”. (10)
4= (9.0 — 4.7 — Ty + T19.T) * w, ()
where 7" and “i7 respectively represent the real and imaginary components of the inputs and result.
This eliminates the need to fetch the four twiddle factors from memory to be multiplied by the
inputs. The IFFT is very similar: however, due to the conjugated values, the second and fourth
internal twiddle factors have switched signs. For the IFFT, the Equations (10) and (11) are replaced
by:

kg, = o i G g . o i 0
Ty T = (To.r — Tyb — Tg.r + T12.8) *x W, (12)

i = e i i : d 0
B = (B8 24 r —Gpb— DLW, (13)

Another optimization performed was loop unrolling. 1f one butterfly operation is performed
at a time, delays arise from subsequent steps within the butterfly requiring results from previous
steps. For example, in Equation (12), xy.rr — x4.7 is performed on cycle n: however. the result is
not available untit cycle n + 4. Therefore, if xg.7 is subtracted on cycle n + 1, the processor will
be required to stall until the result from zy.r — z4.7 has become available. An initial attempt to
solve this issue was to perform four parallel butterfly operations simultancously, referred to as a
Ix unroll. This means that rg.r will be subtracted on cycle n + 4 rather than on cycle n + 1, and
other paraltel butterfly operations will be issued during the intervening cycles. This technique. 4 x

unrolling, eliminates any data dependencies found in the complex multiply operation. However,
performing Tour simultaneous butterfly operations requires 16 complex inputs to the compute tiles
and produces 16 complex outputs. Although the compute tiles perform optimally, this comes at
the cost of memory storage delays. We investigated a 2x unroll operation where two parallel
butterthes are performed simultaneously. Although a few dependency delays arose, the 2x unroll
version that was hnally implemented did not experience the memory issues that the 4 x unroll did.

The last significant optimization was made to improve the time required to store butterfly re-
sults. Imtially, results were only stored by the corner memory tiles. The side tiles were simply
used to buffer results until the corner tiles were ready to store. This resulted m a backup of but-
terfly results, extending all the way through the sending memory tiles, causing delays in supplying
inputs for the subsequent set of butterflies. To alleviate this backup, both side tiles were made to
share the task of storing butterlly results. Because the backup of results does not extend through
the supplying memory tiles, mputs for the next set of butterflies can be supplied earlier than if only
one storing memory tile is used on each side of the chip.

3.1.3 Results
Time-Domain FIR Filter Results

Figure 8 shows the throughput in MHop/s for the time-domain FIR Kernel for both a single
filter, and also dual filters across the entire Raw processor. As the time-domain FIR filter kernel is
performed on a filter length A" = 256, the results show that the throughput of the kernel 1s dependent
on the mput length. Plots for other fitter lengths would show similar results. This 1s because each
distribution of six flter elements requires loading N input vector elements from memory. As
we approach an input tength ol 4096 elements, the throughput reaches 475 MHop/s (950 MHop/s
across the entire chip).

The throughput in Figure 8 has one drop-oft at input length 4096. Beyond this point. the input
no longer fits into the 32 kBytes of cache memory. as

SBytes/element = 4096elements = 32kBytes.

Frequency-Domain FIR Filter Results

Figure 9 shows the throughput in Mflop/s of the Irequency-domain FIR kernel. As seen in
the time-domain results, results for both a single hiter and also dual filters across the entire Raw
processor are given. The frequency-domain FIR Kernel analysis differs from the time-domain FIR
lilter kernel in that the results below are dependent upon the input length. I the hlter length were
to increase or decrease, the performance ol the kernel would not be ellected. Based on these
observations, the results between the two FIR Filter kernets are similar. For short hlter sizes (64
1o 1024 clements), the throughput increases as the vector size increases. As we approach a filter
length ol 1024 elements. the throughput reaches 102 Mflop/s (204 Mflop/s across the entire chip).

The low resolution of the results shown in Figure 9 is due to the Fact that the FET and 1FFT
were implemented in radix-4, which can only compute input lengths that are powers of four. For
example, an input vector ol length 1025 will be padded to the next greatest power of four: in turn
taking just as long as an input vector of length 4096. With this said, the drop-oll seen between

FIR Throughput (time domain)
1000 x x . v x v r

900

800

700

600}

500+

Throughput (Mtiop/s)

4001

3001

200} —— Total Chip Throughput |
Single FIR Throughput

100 . R L
0 1000 2000 3000 4000 5000 6000 7000 8000

Input Length

Fieure 8. Time-domain FIR filter results for a filter length of 256 using the 4 x 4 Raw
Handheld Board. The total chip throughput is based on parallel FIR filters (each side of the
chip performs a FIR filter). The single FIR thronghpnt is based on one FIR filter being
perfornied on one half of the chip.

FIR Throughput (frequency domain)
220 .

200

- b ek ek
& O @
8000

g

Throughput (Mflop/s)

a0t ' Total C-I-'llp Throughput
| = Single FIR Throughput|

64 256 1024 4096 16384
Input Length (powers of four)

Fignre 9. Fregunency-Domain FIR Filier results using a 4 x 4 Raw Handheld Board.
The 1otal chip throughput is based on parallel FIR filters (each side of the chip performs o
FIR filier). The single FIR throughput is based on one FIR filter being performed on one half
of the chip

1024 and 4096 is probably due to the lack of data pomnts teading up to 4096. At 4096 clements, the
eftect of cache misses is seen as the input vector no longer lits into cache, as

8Bytes/element * 1096elements = 32kBytes.

Frequeney-Domain FIR Filter Workload Equation Due to the distributed nature ol this
kernel, an accurate performance analysis can only be provided with the use ol a modihied FFT/IFFT
workload equation. The normal workload equation assumes that computations performed in a
butterfly routine can be reused. This is not the case in this distributed kernel.

The conventional radix-4 FFT workload is 8.5V log, V. where log; 'V is the total number ol
phases, and 8.5 is the number of flops per phase. The number of phases in the distributed kernel
does not change: however, the number of flops per phase does.

A phase can be viewed as:

for (N / 4 butterflies)
Butterfly ()
end.

The quarter of a butterfly routine on any given process performs 6 adds/subtracts Tor the inner
component ol Equation (10), and also 6 adds/subtracts for the outer complex multiplication. The
12 operations are performed on cach ol the 4 tiles for a total of 48 Hops. or 48 * \1 log, N total
floating point operations; therefore, the total FFT workload is

12N log, V. (14)

The IFFT Tormula will be the same as the FET equation with the addition ol the NV divides,

performed as multiplies of . at the end of the routine. With each complex divide being 2 Nops.
this results in an IFFT workload Tormula of

12N log, N + 2N. (15)

Finally, the element-wise multiply between the FFT and IFFT requires 6V operations. Sum-

ming the three portions of the frequency-domain FIR Filter, the total workload is

24N log, N + 8NV. (10)

3.2 QR Decomposition

The QR decomposition is an important factorization used for least squares solutions ol overde-
termined systems ol equations [5]. The Raw QR implementation is based on an algorithm mapping
and real data implementation designed and written by Hank Hoffmann [7]. The implementation
described in this document processes complex data.

16

3.2.1 Algorithm Description

The QR computation produces the decomposition ol an . X n matrix A into the product
A = QR. where the i x i matnix @ is orthogonal and the 20 X n matrix /2 is upper triangular [5].
The particular algorithm used Tor this implementation is Fast Givens. The Fast Givens algorithm
loops over columns ol the put matrix A. zeroing the lower triangular elements by computing
and applying Fast Givens transformations over the rows. These transformations are also applied
to a matrix M. that is initialized to the identity matrix. to compute the matrix (). The Fast Givens
transformations consist of the values v and 3, computed to zero out the element A(z. j) as.

—A(i—1,5)

o= —"">", (17)
Aty 9)

and ‘ _
—conj(alpha) d(v) (18)
= —) W ly
d(i — 1)
where d(1 : n) are the diagonal elements of a diagonal scaling matrix, D, initialized to the identity
matrix.) values are updated in every Fast Givens transformation calculation as,

¥ = —af, (19)
r=d(i— 1), (20)
dgi$—1} =L +7d4), (21)
d(t) = (1 +). (22)

The transformations are then applied to the rows ol A4 and columns of M by,

g 1
Ali—1:%,9:n) = A(i—1:4,79 :n), 23
(2 —1:4,5:n) [| o] W(i—1:4.7:n) (23)
and :
. . . wli B 1
M@ i—=1:4)=M(Gi—1:2) 1 ol (24)

when zeroing element A(e, j). After zeroing all lower triangular elements ol the iput matrix A,
the scaling matrix, D, is applied to A and M. to compute:

Q=MD? (25}

and ‘
R=D"'%4 (26)

A Matlab program F'or computing the Raw Fast Givens implementation is shown m Figure 10.
The algorithm described above, as well as the Matlab code shown in Figure 10 use only one type
of transformation. This is done to improve the efliciency of the algorithm. but imay result in a loss
ol numerical stability | 7].

[m, n] = size(A); % Compute the dimensicns of the input matrix
SNl sy = A s Initialize a vector for the diagonal elements of D
M = eye(m); Initialize the matrix M to the identity matrix

Eori(g==lamn
For (fi=me=1 ¢ Ji 1)
5 Compute the Fast Gilvens transformation to zero A(i,])
[alpha, beta, d(i=1); d(i1)] = fastGivens(A{i=l:1i, J), dai=1:1));

% Apply the Fast Givens transformation to A and M
Ava=L g = begd) Ly L alphal]l = A(l-d s, gen)s
M:, d-1:1) = M(:z, i=1:1) # [(beta 1; 1 alphal]”;

Create a diagonal matrix D from diagonal elements in vector d
el = (=l A28
D = diag(d);

Apply scaling matrix, D, te M and A, to compute Q and R
M*D;
D*A;

-

pe)

Figure 10. Matlab code for computing the Fast Givens QR. Fhe values computed within
the “fastGivens ™ call («. 3. and nupdated D values) are computed as shown in Equations 17,
18, 21, and 22.

3.2.2 Mapping to Raw

The algorithm mapping spectfied in | 7] requires a storage device accessible to each outer Com-
putation tile. The original real QR Decomposition program simulated a 1 x 4 Raw chip. sur-
rounded by simulated streaming DRAM devices. The implementation described in this document
was designed to run on the Raw Handheld board, or a similar configuration. which does not have
a streaming DRAM interface. To resolve this issue the outer tiles of Raw are used for 1/0 and
data storage (to replace the streaming DRAM devices), and the inner block of tiles are used for
computation. Figure 11 illustrates this for a 4 x 4 Raw chip.

Because the Raw chip design is meant to be scalable. the QR code was also designed with
scalability in mind to allow the QR to be simulated on different Raw chip sizes. Testing on different
chip sizes allows us to estimate how the performance of the QR design will scale. Figure 12
shows how an arbitrary sized Raw chip is used for the QR. There is one important difference from
Figure Il that should be discussed in detail: the contiguration in Figure 12 does not assume the
same /O interface as a 4 x 4 Raw. The 4 x 4 Raw nputs and outputs to FPGAs on the Raw
Handheld board via the 4 corner tiles. 1t is assumed that a board design for a larger Raw chip
would allow more of the top and bottom tiles to perform 1/0. The current implementation could
casily be adapted to the 4 x 4 1/0 interface, but the first iteration of computation would take a

Figure 11, Usage of a4 x 4 Raw clip for performing complex QR Decomposition. The
inner 2 x 2 block of tiles (in red: tiles 5, 6, 9, and 10) are used for compuarion. The corner
tiles (in green: tiles 0, 3, 12, and 15) are nsed for /O, Tiles (in blue) 1, 2, 7, 11, 13, and 14,
are used as cachle tiles thar streant data 1o and from their on-tile memory and the
Compuration tiles. All other tiles (grev) are unused.

UNUSED UNUSED

[l o 202

UNUSED

UNUSED

UNUSED

Figure 12, Usage of an arbitrary sized R x R Raw clup for performing complex QR
Decomposition. The inner R — 2 x R — 2 tiles (red) are used for computation. Tiles |
through R — 2 of the top and bottorn rows (blue) are used for I/0 (possibly; see the text) and
data storage. Tiles | througlt R — 2 of the right-most column are used only for data storage.
All other tiles (grey) are unused.

performance hit because of the tower retative bandwidth to the Computation tiles. One way to get
around making any board design assumptions is to time the QR 1n a different manner. For larger
Raw chip sizes. the upper tiles receive the matrix A, store it completely to memory. then begin
to stream the data into the Computation tites. Using this method, the timing of the QR begins
when the data 1s streamed into the computation tiles. The difference from the board results is not
expected to be significant because the off-chip I/O 1s only required in the first iteration.

3.2.3 Implementation

Because the specific mapping required by the Raw Handheld board slightly changes the general
mapping designed in [7], this section will give general implementation details and explain what
happens at important stages of the algorithm for the specific 4 x 4 Raw chip. The resulting data
storage issues will be discussed as well.

Initialization and Timing

The QR program receives mputs from the north and outputs results to the south. The organi-
zation of the mputs is handled by the PCA testbed, and passed into Raw via the High Speed /0
(HSIO) system (see Appendix A. B). The testbed appends the matrix dimensions, i and 1, to the
start of the data that is streamed into the 1/0 tiles of the chip. During the initialization phase of the
algorithm, m and n are read in from the 1/0 tiles, and distributed to all the “working™ tiles (all tiles
in Figure 11 excluding those marked “UNUSED™). Once the working tiles receive mn and n, the
Cache tiles allocate appropriate memory. After allocating memory, initialization is complete, and
each northern Cache tle stores the current Raw cycle count. Upon completion of the QR compu-
tation, the southern Cache tiles again store the current Raw cycle count. All start and finish cycle
counts are sent from north and south Cache tiles to the south west Cache tile. This tile computes
the total number of cycles, or time taken during the computation. The cycle count is appended to
the start of the output data at the end of the program, and extracted by the PCA testbed.

QR Computation

The pseudocode shown in Figure 13 gives a high-level view of how the Matlab QR algorithm
shown i Figure 10 1s executed on Raw. The following sub-sections give details on how Fast
Givens rotations are computed and applied on the Raw Handheld board.

As mentioned in the pseudocode comments in Figure 13, for each loop. the direction that data
streams switches (i.e. north—south to south—north). During iteration ¢. if data ts flowing from
north to south, the updated values of A and M are stored n the southern Cache tiles. Therefore,
in the next iteration the updated values are used. forcing data to stream from south to north. FFor
each iteration, two rows of I, and two columns of (Q are computed. Because of the change in data
flow direction, every other two rows or columns of 2 and) are stored in the north or south Cache
tiles. The resulting storage (for an example 8 x 8 input) of I and (2 1s shown in Figures 14 and |5
respectively. Note that because of the manner in which the Fast Givens rotations are apphed.)
1s stored in row-major fashion and A (which is rotated to eventually contain) is stored column-
major. Upon completion of the QR. appropriate values of (and I? are streamed from the northern
Cache tiles 1o the southern Cache tiles, and all correct rows and columns of € and 2 are combined.

20

COMP_R
feor 1 = 1:COMP: Rin

Size of the computation block of tiles.
Loop through columns (in sets of 2)
of A. For each loop, the direction

H o3 W

that data i1s streamed switches.

fastGivens () Compute Fast Givens rotations.

for 3 = 1:(2*COMP_R) :n
pplyRotations (A)

Loop on columns starting at column 1.
Apply rotations to A, to compute

FH = I

end r and updated A.

Regr 9 1: (2*COMP_R) :m # Loop through rows of M.
applyRotations (M) # Apply rotations to M, to compute g
end # and updated M.
end
finish_Q (M) # If m '= n, final m-n columns of Q

need updating.

Figure 13, High-level pseudocode for Raw implemeniation of the Matlab algorithin
shown in Figure 10.

The matrices. (2 and [2. are then output via the southern 1/0 tiles, taken by the HS1O system. and
reorganized into Mattab matrices within the PCA testbed. Combining the data in this manner is an
inefticient operation. The appropriate data could be streamed out of both north and south /O tiles.
and the combination of data could occur within the testbed. In fact. streaming It and () values out
via north or south I/O ules as they are computed after each iteration would cut down on the amount
ol memory requived by the algovithm. However, the QR was designed to be a possible sub-kernel
of the Singular Value Decomposition, so [t and () are not streamed off the Raw chip. If the QR
were used as a sub-kernel. the small overhead of combining the data on-chip i1s small velative to
the overall computation. The time taken to combine the data on-chip is not included in the timing
of the QR.

Fast Givens Rotation Computation. Figure 16 shows the data low and computation that
occurs during the calculation of the set of Fast Givens rotations for the first two columns of A. For
subsequent iterations, data flows from the Cache tiles. and the data flow direction switches back
and forth between north—south and south—north. All west<>east data flow directions remain
unchanged. When the data flow direction changes, the mapping of computation changes as well.
Switching the direction of data flow occurs by changing each tiles” conceptual notion of what row
they are contained in, to maximize the reuse of code. When the data flow is south—north, each
tile recomputes its row by computing conceptual Row = (R — 1) — phystcal Row, where R is the
number ol rows or cotlumns of tiles on the chip.

The Fast Givens rotations are computed by streaming columns of the input matrix. A, inter-
leaved with diagonal elements of the scaling matrix, D, from the 1/O or Cache/Storage tiles into

_ Storedin
I8 12 A o g i i Northern tiles

_ Stored in
Southern tiles

Figure 14, Swrage of R after QR compuiarion. Every other pair of rows of R iy stored
in either the north or sonth Cache tiles, because the data flow for the QR changes for cach
iteration of the algorithm. The zeros shown are not explicitly compuied.

_Storedin
Northern tiles

_ Stored in
Southern tiles

AEEEEEE

OO0 101010
010 R LCR DGR & [O

Figure 13, Storage of Q after QR computation. Every other pair of colurnns of (Q is
stored in either the north or south Cache tiles, because the data flow for the QR changes for
each iteration of the algorithm

P)

o~

A(n-1:-1.0, 0) A(n-1:-1:0, 1)

1. Pass through.

2.Pass A input down. Pass
d(n-1:-1:0) down.

3. Compute alpha, beta.
delta and pass to right.
Pass delta down. Apply to
final A input to compute 1.
Pass r down.

4.Pass alpha. beta, delta to
right. Also apply to A
inputs to compute updated
A and to final A input to
compute r. Pass updated
A and r down.

5. Store alpha, beta, delta

6. Pass delta right. r down.
- Computation

7. Store delta. r.

- Cache/Storage - Unused 8. Store r.

Ligure 16, Daa flow and compwarion that occurs while computing the Fast Givens
Rotations. This exawple shows the first iteration (data flows frow the VO tiles). Fast Givens
transfors are stored in eastern tiles. Updated A, R, and D) values are stored in southern
tiles. For subsequent irerations, data would flow from north or south Cache tiles.

the Computation tiles. During iteration 7, computations are performed on columns A(n —1: —1:
20,20 and A(n—1: —1 20, 2i+ 1), 1.e. columns 0, 2...., n are passed into column | ol the
chip. while columns 1, 3..... n are passed into column 2 ol the chip. As A and D values are led

into the Computation tiles, rotation values o and 3 are computed, as well as updated D values, and
are passed to the Cache tiles on the eastern side of the chip. During the linal iterations Tor columns
21 and 21 + 1. 0 values are computed from the 2ith and 2: + Lth rows of . These values are applied
to A to compute values [2(2i : 2i + 1,2 : 2i + 1), then passed to the northern or southern Cache

tiles.

Application of Fast Givens Rotations. Figure 17 shows the data How and computation that
occurs during the application of the Fast Givens rotations that were computed in Figure 16, to
columns i + 2 to i + 5 ol A. These same rotations are also applied in a similar Tashion to rows of
the matrix M. For subsequent iterations, data How directions change as in the rotation computation
phase.

The rotations are applied by streaming columns ol the input matrix, A, from the /O or Cache
tiles into the Computation tiles. At the same time, rotation values «v and 3 are streamed into the

A(n-1:-1:0, [i+2 i+4]) A(n-1:-1:0, [I+3 1+5])
or or
A(n-1:-1:0.1+2) A(n~1‘-_1_:0. 1+3)

Py

. Pass through.

2. Apply alpha and beta from
the rnight to A input from
above. Pass updated A
values down. Apply
alpha. beta and delta to
final A input to compute r.
Pass r down

3. Pass alpha. beta. delta
from right to left. Do #2

n

.Pass alpha. beta to left.
Pass alpha. beta, delta to
left in final iterations.

5. Store updated A. r.

Figure 7. Data flow and computation that occurs while applving the Fast Givens
Rotations to inpur A. This example shows the first algorithm iteration (data flows from the 1/O
tiles). «. (3. and & values flow from the east Cache tiles. Updated A or M values, and
compnted R or (QQ values are stored in south Cache tiles. In subsequent iterations, data (A or
M) would flow from north or south Cache tiles.

Computation tiles from castern Cache tiles. The rotations are applied to A, and the updated values
are passed along for storage in the northern or southern Cache tiles. During iteration j ol the uth

overall update (refer to the pseudocode in Figure 13), the rotations are applied to A{n — 1 : —~1:
20,47 : 45+ 3). The sub-matrix A(n—1: —1: 22,45 : 45+ 1) is streamed through column 1 of the

chip, while A(n —1: —=1:2:.45 +2: 15 + 3) 1s streamed through column 2. Each column of the
chip streams its two columns i an interleaved fashion. Streaming two columns at once per column
of tiles on the chip is a product ol unrotting the second loop of the QR. eliminating processor data
dependency stalls throughout computation for improved elficiency. In the case that the remaining
number of columns is not divisible by 4. the columns are streamed through the Computation tiles
one at a time. During the final 1terations of the application during iteration j of overall iteration 2,
for columns A(n — 1 : =1 : 245 : 45 + 3). 6 values are applied to the final updated A values,
computing (2 : 20 + 1,25 : 25 + 1), which is then streamed to the northern or southern Cache
tiles. Therefore, at the end of iteration ¢ (after the QR has looped through j = 7 : 2), the 2:th and
21 + 1th rows ol R have been computed.

Completing () Computation for Tall-Thin Input Matrices. As explained in the previous
paragraphs, as A and M are updated by applying Fast Givens rotations, values of (Q and I? are
computed at the end of each iteration by computing and applying ¢ values (diagonal elements of
the matrix D ~/?) to the updated M and A values respectively. Recall that the resulting matrices
are computed as Q = MD V2 and R = D Y2 A, where M and A have been updated via Fast
Givens rotations [5]. However, for non-square input matrices, the outer loop shown in Figure 13
only loops to n, leaving 1 —n values of uncomputed that still need to be applied to M to compute
the final . — n columns of Q. Figure 18 shows how this is accomplished.

During iteration ¢ of the final updates to Q. the values D(i.1) and D(7 + 1,1 + 1) are passed
from the northern or southern Cache tile in column t of the chip into the Computation tiles in chip
column 1. The first Computation tile passes on D(1, 1), then reads i D(i + 1,1+ 1). From this the
two Computation tiles in chip column | compute 6 values and pass these on to column 2 of the chip.
Chip column | then streams M (0 : 2 : . [t 1+ 1]), while column 2 streams M (1 : 2, [11+ 1]).
both interleaving the streaming columns. M values are then passed to the appropriate Computation
tiles, multiplied by 4, and the resulting (Q values are output to the northern or southern Cache tiles.

1.Pass d([i i+ 1]) values, then
M(0:2:m-1 [i i+1]) down.
Repeat for i=m-n:2:m-2.

2.Pass M(1:2:m-1,[i i+1]) down
for i=m-n:2:m-2.

3.Pass d(i) down, compute delta
from d(i+1). Pass delta nght.
Pass M(0:2.m-1,1), compute
Q(0:2:m-1,i+1) from M(0:2:m-
1,i+1) and delta. Pass down.

4.Pass M(1:2:m-1,i) down.
Compute Q(1:2:m-1,i+1) from
M(1:2:m-1,i+1) and delta.
Pass down.

5. Compute delta from di).
Pass delta right. Compute
Q(0:2:m-1.i) from M(0:2:m-11)
and delta. Pass down. Pass
Q(0:2:m-1,i+1) down.

: 6. Compute Q(1:2:m-1,i-1) from
. -0 . - Computation M(1:2:m-1,i+1) and delta

Pass down. Pass Q(1:2:m-

. - Cache/Storage D - Unused 1,i+1) down.

7. Store Q.

Lignre 18, Data flow and computation for computing the final i — n columns of Q).
Data in the figure flows from north to south, but may flow from soutli 1o north, depending on
the direction of data flow for the last iteration of the algorithm.

[RS]
h

3.2.4 Benchmark Results

Performance results have been obtained for the QR benchmark running on the 4 x 4 Raw
simulator, 4 x 4 Raw Handheld board. and finally on an 8 x 8 Raw simulator. Results will be
shown for these platforms in the following sections.

4 x 4 Simulator and Handheld Board Results

Figure 19 shows results obtamed from running the QR on square matrix mputs on the 4 x 4
Raw cycle-accurate simulator and Handheld board. A performance drop-off is seen when m (for
an X o nput matrix, A), is equal 1o 64, similar to cache effects seen in results for the G4 10].
At m = 64, we see that.

64 rows * 64 columns * 8 Bytes per complex element = 32 kB (Size of matrix ().
and

64 rows * 64 columns * 8 Bytes per complex element = 32 kB (Size of matrix 7).
Because the data is divided between two storage tiles. when m = 64 each storage tile holds 32kB
of data. A performance drop-off is seen at this point because, tor larger values of m. (Q and I? no

longer fit into the 32kB data cache contained in each of the Raw tiles.

x 10° QR Throughpul on 4x4 Raw Handheld Board

T T T T T T T T

Throughput (flop/s)

Cycle-accurate Simulator,]
- - = Handheld Board

0 50 100 150 200 250 300 350 400 450

M, for an MxM input mairix A

Fignre 19. QR Decomposition resnlts nsing the 4 x 4 Raw evele-acenrare simularor and
4 x 4 Handheld board on square matrices. Differences benween the simnlator and board
results are discussed in detail in section 6.1,

Differences seen between the results for the simulator and Handheld board are due to DRAM
access penalties not being accurately represented in the simulator. These differences are discussed
i detail in section 6.1. The reason that the differences between the simulator and board are so

dramatic for the QR is due to the data access patterns ol the implementation. When applying
Fast Givens rotations to R throughout computation, non-contiguous data accesses are made at the
beginning of each iteration due to the fact that as columns are streamed from the Cache tile, only
the bottom m — 7 values are used for iteration 7. Also, switching between updates for () and I?
cach iteration can cause many cache conflicts for large input matrix sizes. The increased number
of cache-misses, forcing reads and writes to the external DRAM, amplify the differences seen
between the simulator and board results due to the inaccurate DRAM access penalties found in the
simulator.

8 x 8 Simulator Results

QR results obtained from the cycle-accurate simulator for an 8 x 8 Raw are shown in Figure 20,
A clock speed of 100 MHz was used to generate the throughput results to allow for easy comparison
to the 4 x 4 Raw results. Three memory configurations were used to generate the graphs in the
figure. The first configuration assumes a similar DRAM setup as for the 4 x 4 Raw; the DRAM is
located on the eastern side of the chip only. The second conliguration uses DRAM located on all
four sides of the chip. The third contiguration also has @ DRAM on all four sides of the chip. but
the stmulator was moditied to have DRAM read and write penalties similar to those observed on
the 1 x 4 Handheld board. The method for how these DRAM access penalties were obtained and
set is described in section 6.1.

x 10° QR Throughput on 8x8 Raw Simulator
35 T T T v -

Throughput (flop/s)
L]

1f —— 4-Sided Memory il
—e— 4-Sided Memory (modified DRAM penalties)
= = = 1-Sided Memory

0.5 . .
0 100 200 300 400 500

M, for an MxM input matrix A

Figure 20. QR Decomposition results using the 8 X & Raw cvele-accurate sinuilator:
Three configurations of the 8 x 8 simmulator were used to generate the plots; A four-sided
memaory configuration, a one-sided memory configuration, aud a four-sided wemory
configuration with “realistic” DRAM access penalties.

Each of the plots in Figure 20 see performance drops at similar points in the graphs: when

m = 110. At this point we sce that,
110 rows * 110 columns * 8 Bytes per complex element = 97 kB (Size of matrix (),
and
110 rows * 110 columns 8 Bytes per complex element = 97 kB (Size of matrix 1?).
Because the two matrices are divided over 6 Cache tiles,
(97 kB + 97 kB)/6 Cache tiles = 32 kB per Cache tile.

As the input data exceeds this size, () and R begin to fall out of the data cache located on the
14 &
Cache tiles, and a degradation or leveling ofT of performance is seen. The cache effects are more
g & !
pronounced in the 1-sided memory configuration because of memory dynamic network conflicts
when multiple Cache tites make DRAM requests.

Scalability Analysis

Figure 21 demonstrates the possible performance advantages ol scaling the size of the Raw
chip. Throughput graphs are taken from 4 x 4 Handheld board results and compared with 8 x 8
simulator results for running the QR with square input matrices. The 8 x 8 simulator was run
using four-sided memory with modihied DRAM access penalties modeled after those found for
the 4 x 4 board. On average. lor points plotted in Figure 21, the 8 x 8 simulator outperforms
the Handheld board by a factor of t1. This superlinear' factor in performance is seen due to the
increased memory accessibility found while locating a DRAM on all four sides of the Raw chip.

The peak achievable throughput for the 4 x 4 Raw QR mapping. which uses 4 out of 16 tles
for computation, is

25% * 1.6 Gflop/s (Peak for entire -1 x 4 chip) = .1 GRop/s.

The peak achievable throughput using the 8 x 8 mapping, which uses 36 out of 64 tiles for com-
putation, 1s
56% * 6.4 Glop/s (Peak for entire 8 x 8 chip) = 3.6 Gllopl/s.

The potentiat of using a higher relative number of Computation tiles for larger tited-array chip sizes
allows for more efficient use of the entire chip. Also, the fact that the efficiency of the algorithm
on the Computation tiles remains consistent for larger chip stzes shows that linear performance
improvements can be obtained by scaling the size of the Raw chip for streaming algorithms such
as the QR decomposition.

3.2.5 Further Optimizations

Given the current board design, improvements could be made to the current implementation
to alleviate cache elfects seen lor large input matrices. One possible solution 1s to separate the
computations for ¢ and /2. Updates could be applied to A until I? is fully computed, then apphed

"The 8 x & Raw QR mapping uses 9 1imes the number of Computation tiles as the 4 x 4 mapping.

9 QR Throughput Scalability: 4x4 vs. 8x8 Raw

x 10
3 : T - v .
25}t
® ol
e 2
°
% | 54 Raw Simulator ||
& = = = 4x4 Raw Handheld Board:
2
2
£ -
05+ E
o - - T e wm o Em R R R R Em e W PR PR W W W W W W ™ = = W
z
0 ; ; i : .
0 100 200 300 400 500

M, for an MxM input matrix A

Figure 21. QR Decomposition results using the 8 x 8 Raw evele-accurate sinudator vs.
the 4 x 4 Raw Handheld board results. The 8 x 8 simulator results used a four-sided memory
configuration, with modified DRAM access penalties modeling those observed on the 4 x
Handheld board.

to M to compute (). This would eliminate the cache conflicts due to switching back and forth
between the matrices during each iteration ol the algorithm, but would force the storage of all of
the Fast Givens rotation matrices for each update. There is a possibility that storing the rotations
could introduce delays.

More significant optimizations could be achieved if the Raw chip were used on a board de-
signed for streaming applications. Surrounding the periphery ol the chip with streaming memory
devices would remove the necessity of the Cache tles, allowing the entire chip to be used lor
computation. Even without streaming memory devices. cache effects could be reduced by placing
DRAMSs on more than one side ol the chip. Evidence of this is seen in the 8 x 3 simulator results
(Figure 20). where dramatic improvements are seen for a four-sided memory configuration over a
one-sided configuration.

3.3 Singular Value Decomposition

The singular value decomposition (SVD) is ol increasing importance in signal processing. It
is an advanced linear algebra operation that produces a basis for the row and column spuce of the
matrix and an indication of the rank of the matrix. In adaptive signal processing, the matrix rank
and the basis are useful Tor reducing the effects of interference [11].

3.3.1 Algorithm Deseription

Given an m x n.complex matrix A, the singular vatue decomposition ol A is
A=UTV", (27)

where U is a unmitary matnix of size m x n, ¥ is an n x n diagonal matrix with all entries real and
sorted in descending order, and V" is an n2 x 1 unitary matrix.

The algorithm chosen to implement the SVD is the Stream Hestenes SVD algorithm (or simply
Stream SVD) proposed by Strumpen, Holfmann, and Agarwal [19]. The algorithm is based on the
Hestenes-Jacobi method, applying Jacobi rotations to decompose the input matrix A [5]. What is
unique about the Stream SVD method is that it computes and applies rotations i blocks. While
this sacrilices speed ol convergence, it allows for a paratiel implementation that is highly suttable
for an architecture such as Raw.

3.3.2 Mapping to Raw

The algorithm mapping specified i [19], similar to the QR mapping, requires a storage de-
vice accessible to each outer computation tile. The implementation described in this report was
designed to run on the Raw Handheld board, which does not have such a storage device accessible
at the periphery of the chip. To resolve this issue the outer tiles of Raw are used for 1/0 and data
storage. and the inner block of tiles are used Tor computation. Figure 22 iltustrates this for a4 x 4
Raw chip.

The present Raw implementation of the SVD only computes Y. A method for caleulating U
and V7 is described in the algorithm mapping document [19]. We do not expect the performance on
the Raw processor to signilicantly change due to the calculations required for computing U and V.
The apphcation of Jacobi transformations in the computation of {7 can be performed in an efhcient
streaming manner similar to the computations performed to compute Y. The divisions required in
the computation of V', where

B=U"A, (28)

o= N8| (29)
and 5

. o 30

v B, (30)

are insignilicant compared to the overall work required to compute ¥ and 7. The only foresee-
able negative affect due to the computation of U7 and 17 1s the potential increase ol cache misses
encountered in the computations due to the extra memory usage required to store the matrix U,
The number of cache misses can be minimized by storing the Jacobi rotations and applying them
separately in the updates to A and U however, an increase in fateney 1s expected. The magnitude
of the increased latency will be data set size dependent.

3.3.3 Implementation

This section describes the specihic implementation of the SVD for the Raw Handheld board.
Details of this implementation are shghtly different than the general mapping described in [19].

UNUSED

Figure 22, Usage of a 4 x 4 Raw chip for performing the complex Stream Hestenes
SVD. The inner 2 x 2 block of tiles (in ved: tiles 3, 6, 9, and 10) are used for compuration.
The coruer tiles except for the southeastern corner (in green: tiles 0, 3, 12) are nsed for 1/0.
Tiles (in blue) 1. 2. 4. 7.8, 11, 13, and 14, are used as wewmory tiles that will steeam dara 1o
and fron their memory and the compuration tiles. The 15t or southeasteru-niost tile (grev)
is nnsed.

Initialization and Output

The SVD receives inputs from the north and outputs the resulting matrix and timing information
out of the southwest-corner 1/O tile. The organization of the inputs is handied by the PCA testbed
and passed into Raw via the High Speed 1/O system (see Appendix A, B). The testbed takes the
input matrix, A, and divides the rows of the matrix between the two 1/O tiles. These rows are
streamed into the 1/O tiles in a snaked row distribution?. Along with reorganizing the input data,
the testbed will append the matrix dimensions, m and n. to the start of the data that is streamed
into the /O tiles of the chip. During the untimed initialization phase of the algorithm, i and
e are read in from the O tiles, and distributed to all the “working™ tiles (all tiles in Figure 22
excluding those marked "UNUSED™) on the chip. The working tiles receive m and n and allocate
any necessary memory. After allocating memory, initialization is complete, a synchronization or
barrier function is called, the current Raw cycle count is stored, and the SVD function is called.
After completing the SVD, another synchronization or barrier function is called. and the final Raw
cycle count is stored. The beginning and ending cycle counts are then output to the testbed along
with the resulting matrix, .

“Tile 1 will receive rows 0.3, 4._7. X— ._m. and tile 2 will recetve rows 1. 2.5, 6. ... m. The input row indices
cian be computed by interleaving values [0:4:m}and [3:4:m] for tile 1. and interleaving values [:d:m|and [2:4:m] for

tile 2.

SVD Computation

Figure 23 shows a pseudocode example for the Stream SVD computation on Raw. The cal-
culation of row norms is performed on the VO or Cache tiles, and the Jacobi calculation and
applications are pertormed on the Computation tiles. Each of the tiles will perform computations
on different row pairs in parallel due to the use of block transformations within the SVD algo-
rithm [19]. The following sections discuss the details of the computations outlined in Figure 23.

OMP_R = ¢ # Size of the computation block of tiles.
do # Leop until conTengenes eriferia gnre
for i=0:COMP_R:m # Loop over rows of A 1n block i
j=1i+1
calculateRowNorms (1, J)
computeJacobi (1, j) # Perform boundary cperations for
applyJacobi (1, j) # rows 1 and 7j.
for 1ib=1i+COMP_R:COMP_R:m # Loop over remaining rows after row

Jjb=1ib+1
calculateRowNorms (i, j,1b, jb) # Perform non-boundary operations:

~omputeJacobi (i, j, i1b, jb) # Compute and apply transformations in
applyJacobi (1, j, 1b, jb) # marald lel feor rows 4, J, 1B, b
end
el
while (convergence criteria not met)
calculateSigma () # Calculate Sigma from row norms of A.

Figure 23, High-level pseudocode of the Strearm SVD imuplementation for Raw.
Calculation of the row norms is performed on the /O or Cache tiles, wihile the Jacobi
transformation calculation and application is performed on the Compmation tiles

Testing for Convergence. Within the SVD computation, a o vatue is calculated and used in
each iteration to determine whether convergence to an orthogonal matrix has been achieved. This
value is calculated by summing the norms of each row in the input matrix. 1. and multiplying by
the floating point precision ¢. Because the implementation is performed on Raw in a streaming
manner, 0 cannot not be calculated before the SVD without streaming in the entire matrix before
the computation begins. Therefore, itis assumed that the input matrix 1s not orthogonal (i.e. it will
not meet convergence in the tirst block sweep of the algorithm), and 4 is computed throughout the
first block sweep. As ecach row is first streamed into the chip the 1/O tiles calculate the row norm
as they stream the values into the Cache tiles. The row norms are summed, then passed on to cach
Computation tile at the end of the first block sweep, where o is computed. In subsequent block
sweeps, the calculated o vatue will be used for checking the convergence.

Computing Jacobi Rotations. The first step of the SVD algorithm 1s to compute the row
norms, S(7) and S(j). of rows 7 and j respectively, which will be used in the Jacobi rotation
calculation. The row norm calculations are performed on the 1/0 tiles when rows ¢ and j are first
streamed onto the chip, and computed on the Cache tiles for subsequent iterations. As the data for
rows 7 and J stream onto the chip, the value, g;;, for rows 7 and j is computed as

gii = A1) = A(g,3)". (31)

The value, ¢, 1s compared with where a value of g/ greater than & means that convergence has
not been met for the current block sweep. The value, g,;. is used with 5(z) and S(7). the norm
values for rows ¢ and . to calculate the Jacobi rotation values:

‘d
o

l¢; 2] = gacati{S(8),S1), 5:4)- (
The Jacobi rotation values are calculated for a complex input as follows:

Sl =aln)

= 33

! 2% g e

f: sign(w) N (34)
w| + 1+ w?

1 =

e (35)
Vv 1+ t*conj(t)

s=1%*c. (36)

Jacobi rotations are computed for only two rows of the mput matrix when the data that must
be rotated resides on a single side of the chip. This boundary case can be seen n Figure 24. This
figure describes the data low and computation that occurs upon the start of the SVD algorithm. At
the start, no data has been streamed mto the chip, so it conceptually resides on only the northern
side of the chip. In this case, Jacobi rotations will be computed for rows ¢ = (0 and) = 1. After the
application of the rotations to rows 0 and 1, the updated rows will reside in the eastern Cache tiles
(tiles 7 and 8 respectively). For all remaining updates using rows 0 and 1. Jacobt rotations will be
computed for four row-pairs simultancously because data may be streamed from north—south and
easte>west at the same time. Figure 25 shows how this is performed for computing Jacobi rotations
Tor the rows O and 1 with rows 2 and 3. During this step. rows 0 and | are streamed from the castern
Cache tites to the west, while rows 3 and 2 (recall that data is imput i a snaked row distribution).
are streamed into the chip and flow north—south. As the values cross on the Computation tiles, g
1s computed for each of the row pairs, then used to calculate the Jacobi rotations.

Applying Jacobi Rotations. After the Jacobi rotations have been calculated for a given row
pair, 7 and . the rotations are applied to the rows. For a row index. &, inrow 7 and j, the values are
rotated as follows:

temp = A(iL k), (37)
Al k) = cx A(i, k) — conj(s) = A(J. k), (38)
A(g, k) = s «temp + ¢ x A(y, k). (39)

'~
(]

A(0, 0:n) A(1,0:n)

Pass data through. Also
calculate the row norm of
the current row. At the
end of the row. pass on
the calculated row norm
Sum all row norms,

2.Pass data through. Store
row as it passes through

3. Pass data through.

4. Calculate Jacobi rotations
for rows 0 and 1

.-I‘O

- Cache/Storage - Unused

Figure 24, Data flow and compmarion that occurs while computing Jacobi rotations for
a boundary case.

A(3.0:n) A(2.0:n)

1.Pass data through. Also calculate
the row norm of the current row
At the end of the row. pass on the
calculated row norm. Sum all row
norms

2.Pass data through. Store row as it
passes through.

3.Load and pass West updated row
0" of A. Also calculate row norm
Pass at end of row

4. Load and pass West updated row
1" of A Also calculate row norm
Pass at end of row

5. Compute Jacobi rotations from
rows 0''' and 2

6. Compute Jacobi rotations for rows
0" and 3.

7. Compute Jacobi rotations for rows
11" and 2.

8. Compute Jacobi rotations for rows
1" and 3

Fienre 25 Data flow and computation that occurs while computing Jacobi rotations for
a nou-boundary case. Superscript values denote the number of times the row has been
rotated.

As with the computation of the Jacobi transformations, rotations are applied to only two rows at
once in the boundary situation where the data to rotate resides on one side of the chip. The data
flow for the boundary case is seen in Figure 26. The computation shown in this tigure directly
follows the computation of the rotation values shown in Figure 24, In Figure 26, rows 0 and 1 are
streamed into the Computation tiles, and the Jacobi rotations are applied on tile 6. The updated
values of rows 0 and | are then stored in the eastern Cache tiles (uiles 7 and 11 respectively). For all
remaining apphcations of Jacobi matrices using rows 0 and 1, Jacobi rotations will be applied for
four row-pairs simultancously because data may be streamed trom north—south and east+>west
at the same time. An example of this type of rotation application is shown in Figure 27. in this
tigure, the Jacobi rotations calculated in the step shown in Figure 25 are applied o updated rows
0™ and 1Y, and rows 3 and 2, where superscript values denote the number ol times the row has
been rotated. Rows 01 and 11V are streamed west from tiles 7 and 1 respectively, while rows 3
and 2 are streamed south Trom tiles 2 and | respectively. Jacobi rotations are first applied to rows
0" and 2 ontile 6. The output values of 0) are streamed to the west, and 2V are streamed south.
To the west, on tile 5 row values 0 are rotated with row 3, outputting 0V 10 be stored in the
western Cache tile 4, and row values 3V streamed to the south. Concurrently. tile t0 processes
row values 1 with 2V outputting 2% 10 be stored in the southern Cache tile 14, and row values
12 streamed 1o the west. Also, tile 9 rotates row values 12 and 3V, outputting 1 10 be stored
in the western Cache tile 8, and 3% 10 be stored in the southern Cache tile 13.

SVD Block Sweep. Figure 28 combines the computations shown in Figures 24, 25, 206,
and 27. The figure also shows the data flows for the remaining steps necessary to complete one
block sweep of the Stream Hestenes SVD algorithm for an input matrix containing 6 rows. The
odd steps in the tigure show the computation ol Jacobi rotations. The even steps show the appli-
cation ol the rotations. The first four steps shown in the hgure correspond to Figures 24, 26, 25.
and 27 respectively. The fifth subdiagram shows the computation of Jacobi values for rows 0%
and 13 with rows 4 and 5, with the application of the Jacobi rotations illustrated in the sixth subdi-
agram. The outputs, row values Tor 0 and 1 are stored in the eastern Cache tiles, and updated
values for rows 42 and 5 are streamed to the southern Cache tiles. At this point rows 0 and
I have been rotated against all other rows in the input matrix and require no further rotations for
this block sweep. After this point, another boundary condition is found in the seventh subdiagram
as all remaining rows (2 through 5) are located in the southern Cache tiles. Subdiagram seven
shows the computation ol Jacobi rotations for the two rows 3 and 2?). The application of the
Jacobi rotations is shown in subdiagram eight where the updated values for rows 33 and 2'*) are
streamed to the western Cache tiles. Subdiagrams nine and ten show the rotation of rows 3 and
24 with 4% and 5, resulting in rows 4% and 5% being stored in the northern Cache tiles, and
the final values (for this block sweep) for rows 3 and 2 (3 and 2™) stored in the eastern Cache
tiles. Finally the boundary condition is Tound Tor rows 4 and 5 in the remaining two subdiagrams,
where the resulting rows, 4 and 5, are stored in the eastern Cache tiles as well.

Throughout the block sweep. on each Computation tile a convergence flag 1s kept and set to
false it any |g;; value is greater than o. At the end of the block sweep, the convergence Hags are all
sent to tile 0, where a logical and is performed on the flags, and the resulting value is passed back
to each tile. I the returned flag value is true, the resulting singular values are computed and sorted
(this is discussed in the next section) then output to the PCA testbed. If the returning convergence

‘)
h

1. Stream out row 0 of A

2. Stream out row 1 of A

3. Pass data through

4. Apply Jacobi rotations to
incoming rows 0 and 1
Pass updated row 0 East,

and updated row 1 South

5. Store incoming row

Figure 26, Data flow and computation that occurs while applving Jacobi rotations for a
bonndary case.

Load and pass South row 3 of A. Also
calculate row norm, pass at end of row
Load and pass South row 2 of A. Also
calculate row norm, pass at end of row

.Load and pass West updated row 0''
of A. Also calculate row norm, pass at
end of row.

Load and pass West updated row 1
of A. Also calculate row norm, pass at
end of row

. Apply Jacobi rotations to rows 0" and

2. Pass updated row 0 West.

updated row 2'" South.

Apply Jacobi rotations to rows 0 and

3. Pass updated row 0" West,

updated row 3'"' South.

Apply Jacobi rotations to rows 1''' and

21" Pass updated row 1'% West,

updated row 2"’ South.

. Apply Jacobi rotations to rows 1" and
3. Pass updated row 17 West
updated row 3% South.

9. Store updated row 0" of A

- - Computation 10. Store updated row 1" of A

11. Store updated row 3 of A

N

w

A

14,

o

~

@

B o

- - Cache/Storage |:] - Unused 12. Store updated row 2'¥' of A

Figure 27, Data flow and computation thar occurs while applyving Jacobi rotation for o
non-howidary case.

36

(3)

] i
i L

(8) (9)
)] I
l—»
i I

(10) (11)

Figure 28, Dara flow for a single block sweep of the Stream Hestenes SVD on an inpin
matrix coutaining 6 rows. Numibers within the subdiagrams represent the row nnmber being
read, processed, or stored. Superscripr numbers denote the number of tines the row has been
rotated. This process is repeated unril convergence criteria are niet.

flag 1s false, the block sweep process is repeated untul convergence cnteria are met.

The location of the rotated data at the end of a block sweep will be different than the location of
the data at the start of the sweep. In Figure 28, the data is located north of the chip in the beginning
ol the sweep, and in the eastern Cache tiles at the end. Therefore data flows and computations
for subsequent block sweeps occur in different directions and locations. This is accomplished by
changing each ule’s conceptual notion of its location in the grid (virtually rotating the gnid), requir-
ing a complex coordination ol the computation and directional routing of data. This coordination
is also dependent upon data size. In Figure 28, il the mput matrix, A, contained 8 rows (or any
number divisible by 4), the data would have been located in the western Cache tiles at the end of
the block sweep instead of in the eastern tiles.

Computing . Once the convergence criteria has been met for the rotated matrix, ¥ values
are computed by taking the square root of the norm of each row i the matrix. These values are
then sorted using a bubble sort algorithm | 1], and output to the PCA testbed.

3.3.4 Benchmark Results

Figure 29 shows results obtained rom running the SVD on square matrix inputs on the 4 x
Raw cycle-accurate simulator and Handheld board. The performance graph levels off when m, for
an X moanput matrix, A, is equal to approximately 90. This 1s similar to cache effects seen in
results for the G4 [10]. At m = 90, we see that,

90 rows * 90 columns * 8 Bytes per complex element = 64 kB (Size of input matrix A).

Because the data 1s divided between two storage tiles, when m = 90 each storage tile holds 32kB
of data. A performance drop-off is seen at this point because, for larger values ol in, the input
matrix will no tonger ht into the 32kB data cache contained in each ol the Raw tiles.

Results for the Raw cycle-accurate simulator are only provided for data sets up o a 192 x 192
input matnx due to excessive simulator time requirements for the SVD. However, it 1s expected that
the results should level oft similar to the cycle-accurate simulator results seen for the QR kernel
benchmark (see Figure 19). Dilferences seen between the results for the simulator and Handheld
board are due to DRAM access penalties not being accurately represented in the simulator. These
differences are discussed in detail in section 6.1.

3.3.5 Workload Considerations

The Stream SVD document. [19]. detines the total number of muluply-and-add operations of
the SVD for processing real data to be

((5n +4) x m(m — 1)/2) * it. (40)

where ¢ represents the number of iterations or block sweeps required for the algorithm to converge.
Therefore, we define the workload, in flop. for the complex implementation to be

8 ((dn+4) «m(m — 1)/2) x1it, (41

because there are 8 Nop required to perform each complex multiply-and-add operation.

Figure 29.

Throughput (flop/s)

=

Handheld Board
Cycle-accurate Simulator]

0 100

200

300 400 500

M, for an MxM input matrix A

SVD vesults using the 4 x 4 Raw evele-accurate sivdator and 4 x 4

Handleld board on square martcices. Diffevences benween ihe simudator and board results are
discussed in derail in Section 6. 1.

Table 1.

Comparison of SVD Workloads.

35

Stream Hestenes SVD Stream Hestenes SVD | Golub-Kahan SVD |
Real Data Complex Data Complex Data
Matrix Size | lterations T Workload (Mflop) [Tterations I Workload (Mflop) = Workload (Mflop) |
16 x 16 7 0.14 16 |.2tﬁ[()E(Jj
32 x 32 7 1.14 16 10.41 2.04

61 x 64 g 10.45 15 7838 16.20 |
128 x 128 9 94.22 17 71188] 129.12 |
256 x 256 9 754.38 15 1502917 | 103.10 |
128 x 32 7 18.66 B 191.95 | 361
128 x 64 9 47.40 18 379.22 20.40 |
256 x 32 | 7 74.94 17 728.00 EE R
256 x 64 8 | 169.21 16 135365 28.78 |
256 x 128 8 33632 17 | 2858.74 162.67 |

Experimentation has shown that using the Stream SVD algorithm to process complex single-
precision floating-point data requires a signiticantly higher number ol iterations or block sweeps
to converge relative to the number required for real single-precision floating-pomnt data. Conse-
quently, workloads for processing complex data using the Stream Hestenes algorithm are consid-
erably larger than using a more conventional algorithm such as the Gotub-Kahan SVD, described
in |5]. Table I compares the number of iterations required for convergence, and total workloads
for real vs. complex single-precision floating-pomt data run using the Stream SVD algorithm. A
floating-point precision ¢ = 17 was used for both real and complex simulations. Also shown in
the table are total workloads required tor the Golub-Kahan SVD algorithm for processing com-
plex single-precision floating-point data. The workload equation used for the Golub-Kahan SVD
algorithm is discussed in [11].

3.4 Constant False Alarm Rate Detection

3.4.1 Algorithm Description

As described in the PCA Kernel Benchmark Report [11]. the constant Talse-alarm rate (CFAR)
detection algorithm finds targets i an environment of varying background noise. Assume a data
cube whose dimensions are number of beams Ny,,. number of range gates N, . and number of
dopplers Ny,,. For each cell in the data cube, a tocal noise estimate is computed from the 2Nz,
range gates nearest to the cett C'(z, J, &) under test that are at least a certain number of guard cells
G away from C'(z, J, k). Formally, tfor each cett C'(z, j, k). the value of the noise esumate 7'(2, 7. k)
1s calculated as

G+Najos

1

T(,y.k) = N Cli,i+ 1Lk +|C(,5 -1 k)| (42)

I=G+1

The range cells mvolved in caleutating the noise estimate for a particular vector are shown in
Figure 30. For each cell C'(1, 3, k). the quantity (C'(¢. 3. k)7 /T (1, 3. k) 1s calcutated: this represents
the normalized power in the cell under test. If this normalized power exceeds u threshold . the
cell 1s considered to contain a target.

3.4.2 Implementation on Raw

For the CFAR kernel, the detined data sets are targer than the buffer size available with the
HSI10 interface. Therefore, the Raw CFAR kernel has two varnants. an HStO variant and a USB
variant. We describe each of these in this section.

The Raw implementation of the CFAR using the High-Speed /O (HSI1O) mterface sphts a Raw
chip ol size 4 x 4 into Tour quadrants of size 2 x 2. Each of these quadrants consist of three types
of tiles, one 1/0 tile. one Forwarding tle. and two leal tiles. The O tile 1s adjacent to an external
1/0 port and handles all the external /O for the quadrant. The forwarding ule forwards data and
results to and from the leat tule that is not adjacent to the /O ute. Of the two leaf tiles, one is
adjacent to the 1/0O nle and one is adjacent to the forwarding tite. The 1O tile thus communicates
solely with its adjacent leaf tile and forwarding tile, and the forwarding tile communicates solely
with the forwarding ule adjacent to it. See Figure 31 for a chagram of this arrangement for a 4 x 4
chip. Note that only the static network 1s used for iter-tile communication.

40

Cell Under Test
C(iy.k)

1G)

Fignre 30, Sliding window in CFAR detection. The example shows the nmmiber of gnard
cells G = 1 and the mmmber of cells nsed in computing the estimate N.pqp = 3.

B votie
l:] Forwarding tile

. Leaftile

Fignre 31 CFAR’s use of tiles on the MIT Raw. Thick black lines delineate the
guadrants on the chip. The arrows are drawn only on the upper-left guadrant and indicare the
tiles which communicare.

41

This implementation takes the data cube and flattens 1t into a sertes of one-dimensional rows
of size N,,, where each row represent elements from the same beam and doppler. These rows are
then divided among the four quadrants and streamed into the 1/O ports. The 1/O tle will stream
one row to each tile in its quadrant. As data is streamed in, each tile looks for targets. For every
cell under test, a 32-bit word is returned. This word equals 0 if there are no detections: otherwise,
the word encodes the beam (8 bits), doppler (8 bits), and range gate (16 bits) in which the target
was found. Because of this encoding, the data cube can have at most 256 beams, 256 dopplers and
05536 range gates. Note that this can be easily extended by sending the beam. doppter, and range
gate as separate numbers: however, current encoding is sulficient for data sets of interest. These
detection reports are sent off-chip by the /O tile, either directly or through the forwarding tile.

The USB version differs in that only the left half of the chip is used. Since the right half has no
tiles adjacent to external /O, those tiles are not used. and the data that would have been passed to
them is reallocated to the tiles on the left half of the chip.

As shown in the PCA Kernel Benchmark Report [11], an efficient implementation of the CFAR
algorithm can make use of the redundancy in the computation of 7*:

|
2WNerm
4 YCIR. 5 — G h)°
— |Cli,5 — G — Negor, k)2
S T (R ER

TG, 7+ 1,k)=T@, 35,k + (1CG 7+ 1+ G+ Nepar k)

By using this recursive relationship, the value of 7" for all V,, range gates can be calcutated in
O(N;,) time. The Raw implementation takes advantage of this by maintaining two buffers. One
buffer caches squared values C'(7, j,)% and is of size N, words. The other stores the squared sum
of a one-sided window and is of size Ny, + N4 words. As values are streamed in for a particutar
row, these arrays are updated with the necessary values, and 7°(7, 7. &) is calcutated accordingly
using the two arrays.

3.4.3 Benchmark Results

Figure 32 shows the parameters and the results of running CFAR on a large range of data
set sizes. In Figure 32, timing is performed during the entire CFAR algorithm. including when
data 1s streamed in and out. The CFAR algorithm in its current state is able to achieve at most
approximately 2.5 operations per cycle for the entire chip. At around 4220 range gates (4220
elements x2 buffers x4 bytes/element ~ 32 kB), the two butfers used by the CFAR begin to exceed
the Raw’s data cache. These bufters are read approximately sequentially, so a drop-off at this point
is expected. The performance continues to steadily decline until it reaches approximately 1.77
operations per cycle. There is some fluctuation as the number of range gates increase. However,
the fluctuation is relatively small.

The results in Figure 32 were obtained using the HSIO interface. To obtain results on the data
sets defined in the kernel benchmark report, we had to use a mixture of HSIO and USB. Data
sets 2, 3, and 4 for CFAR consume 82, 22, and 9 MByte of space, respectively. HSIO has a
maximum bufter of 8 MByte for sending data, which 1s only large enough to accommodate CFAR
data set 1. By using a special “high-speed input-only™ version of the HS10 interface, we were

CFAR - Raw

28 e T T T T

|4
o
L

Throughput (instructions/cycie)
R =

o
1

1.4 L - L ' A ' ' i
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of range gates

Figure 32, Performance of CFAR on the MIT Raw. G = 3. Ny, = 8. Nigor = 6.
Niyop = 16, 20 < N;., < 8114, and p = 200.

able to accommodate data sets 1 and 4. Data sets 2 and 3 had to be benchmarked using the USB
interface. As the USB interface has a relatively high latency. all of the I/O time for these data sets
was subtracted out, making them appear faster than the other data sets.

3.4.4 Other Optimizations

There are a few significant optimizations that can be made to the CFAR. One involves cutting
the size of the C'(1. J, k)? array. We observe that the algorithm accesses a squared element only five
times, when it is respectively added to the vightmost window, subtracted as part of the rightmost
guard cells, compared as a cell-under-test, added as a part of the feftmost window, and subtracted
as the lefumost window shifts. Cells that are subtracted as the leftmost window shifts are never
accessed again and need not be stored. Thus, instead of having a buffer of size N,,. a lot of
memory could be saved by using a rotating buffer of size 2 x (N.p,r + () + 1, which is typically
far smaller than N,,. As N s, and G are typically very small numbers, such a buffer would casily
fit in cache. This would allow the CFAR to avoid the drop-oll shown in Figure 32.

The other major optimization is that the partial window sum buffer is also not necessary. Using
the partial sums saves on the number of operations that must be done: the sum of any given window
is only done once when it is calculated as the right window, whereas normally it would be implicidy
calculated both when it is the feft and right window. However, the amount of memory that is
required to maintain this buffer makes it relatively expensive. especially when N, gets farge.
Thus, using a single value to maintain the current 7°(z, j, k) could improve performance.

s o R R

4. Communication Benchmark: Corner Turn

4.1 Algorithm Description

Mathematically, a corner turn or transpose of a matrix can be expressed as
B= AT,

where A is a matrix of size e x nand B3 1s a matrix of size i x . This operation imvolves copying
elements of A to B in the following way:

by =gy wherer=1,2,.. ., i =12 e 0.

Thus. the simplest algorithm for implementing the corner turn is to loop over all the elements
across the rows and columns as follows:

for (1L = 0; 1 < my i++)
for (3 = 05 3 < nj)
BL3ITi] = ALl [2)%

In practice, this simple algorithm will lead to poor performance owing to poor cache utilization. h
is more efficient to divide the matrix into blocks and transpose each block individually. The block
size depends on the characteristics of the processor, including the cache size.

4.2 Implementation on Raw

In general, a separate corner turn stage should be regarded as something to avoid in program-
ming Raw. 1f the corner turn is (as is usually the case) occurring between two computational
steps. better efficiency can be obtained by overlapping the movement of data with computation at
a fine-grained level. However, the corner turn is an interesting benchmark because it shows the
performance of the processor in a pure communication operation.

Our approach to the corner turn on Raw is to have cach tile be responsible for the transposition
of a set of individual blocks. We used as a starting point for the benchmark the C code for a single-
processor corner turn developed by Rodric Rabbah of MIT and Jinwoo Suh of USC/ISI East as
part of the VersaBench suite (for more information on VersaBench see Rabbah ¢r al. [16]). In their
code. a block size of 64 x 64 is used. This allows both the input and the output data assoctated
with a given block to be stored in the processor’s 32 kByte cache. because

(64 x 64) elements x (4 bytes per element) x 2 (input and output) = 32 kByte.

Because data movement is the only type of operation involved in the corner turn, the actual
input data is irrelevant. Therefore, in contrast to our other benchmarks on Raw, our implementation
of the corner turn does not actually use a matrix streamed in from off the board. Instead it tukes
the size of a matrix as an input. Each tile then allocates space for the blocks of the input and output
matrices for which it is responsible. and generates an input matrix of the appropriate size which

it stores in memory. During the timed part ol the benchmark. each tile copies and transposes the
blocks assigned to it.

For this implementation we access the data purely through the memory network, that is, by
reading and writing. We are also using the cache to bulTer each block as it is transposed. This
implementation is less efficient than an implementation that uses Raw’s static network. However,
it allows easy scaling ol the matrix and the number ol tiles involved. The corner turn code is
written to allow | tile, 4 tiles, or 16 tiles of Raw to be used in the benchmark. In the case of one
tile or 4 tiles. the corner turn is performed on the tiles on the east side ol Raw, closest to memory.

4.3 Benchmark Results

We began by testing the corner turn for square matrices on a single Raw tile. The achieved
throughput is shown in Figure 33. The achieved throughput peaks between 35 and 40 Mbyte/s, but
notice that it drops severely Tor data sizes that are multiples of 256 elements. This performance
drop turns out to be dependent on the stride ol the source matrix. The corner turn code shown
here reads the blocks of the source matrix by columns, and the matrix is stored in row-magor order.
When the distance between items in the same column is a multiple of 1024 bytes (=256 elements
x 4 bytes per element), the performance drops by more than a lactor of 3.

To understand the cause of the performance drop, we must understand that each Raw tile pos-
sesses a two-way set-associative cache. Each set consists of 29 = 512 fines of 2° = 32 bytes per
line. When two addresses differ by some multiple of 277°° " = 16381, they are mapped to the
same two Imes in the cache. I we read 64 elements that are 1024 bytes apart, then there will be
four lines that map into the same two lines in the cache. By the end of the first column read, the
first two lines will have been evicted to make room for the second two lines. Unfortunately, when
we read the second column, the same four lines will successively knock each other out of cache
again. This competition for the scarce resource of cache lines only increases as the stride grows.
We can improve the algorithm by shrinking the row block size when the stride is a multiple of 2506.
To be precise, we shrink the original block size ol 64 by the source-stride divided by 128. In the
case where the source stride is 256, Tor example, this results in a block size of 32 rows.

The results of the improved algorithm running on all 16 tiles of Raw are seen in Figure 34. The
bandwidth increases by nearly a factor of 10 when compared to the single tile results. A factor of
four comes from the Tact that Raw has four “pipes™ to memory, one for each row. The remaining
increase in performance we attribute to the presence of multiple tiles in each row, cach making
memory requests, keeping the memory system maximally busy.

There are clearly sull performance drops for matrix sizes that are multiples of 1024, that is.
when the stride associated with cach tile is a multiple ol 256. These decreases come Irom the fact
that decreasing the block size does increase the memory traffic. However, the performance drops
are clearly not as severe as in Figure 33.

Similar decreases in performance can also be seen in our results on the PowerPC G4 [101, and
the cause there was also the cache mapping policy. In fact the drops were in general less severe
because the associativity (the number ol tines into which any one line may be mapped) of the G4's
data cache is targer, but the cause and effect are the same.

We timed the two baseline data sets (corner turn of a 61 x 5120 matrix and a 768 x 5120
matrix) on all 16 tiles of the Raw chip. In these cases we map 5120/16 = 320 columns to each

46

Corner turn throughput for square matrices on one Raw tile
40 T T T T T T

w
1]

Throughput (Mbyte's)
=]
o

=]

200 400 600 800 1000 1200
Matrix dimension

Figure 33, Coruer turn results for square watrices ou a single tile of Raw.

Corner turn throughput for square matrices on 16 Raw tiles
360 — . - . - - - - - -

320

280

Throughput (Mbyte/'s)
- - [X] (Y]
N o Qo o
o o =] =]

@
o

3
o

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Matrix dimension

Figure 34. Corner turn results for square watrices on 16 tiles of Raw.

47

Corner Turn Throughput Comparison

T T

Data Set

n

L L " PR "
0 50 100 150 200 250 300 350 400 450 500
Throughput (Mbyte/s)

Figure 35, Corner turn throughput for the G4, Xeon, and Raw board.

tile. These are treated as 5 column-blocks of size 64 columns in each block. The results are shown
and compared to similar results on the G4 and Xeon in Figure 35. Even though we are using
the dynamic network for the corner turn on Raw, the 100 MHz Raw is capable of performing a
corner turn at the same rate as the 500 MHz G4. The 2.8 GHz Xeon 1s only 27% faster in the
small case (set 1) and 22% laster in the large case (set 2). This performance is remarkable when
it is considered that the G4 and Xeon code was hand-optimized to use SIMD vector instructions
(see [10, pp. 21-23]). Furthermore, we note that a static network corner turn in the Raw simulator
has been demonstrated to have much better performance than the code presented here (see Section
4.4). The performance of Raw on this benchmark can undoubtedly be attributed to the emphasis
on providing network bandwidth in the Raw design.

4.4 Raw Static Network Implementation

Previous work on Raw includes the timing of a Fast corner turn of a 1024 x 1021 matrix using
the Raw chip’s static network [2 1] and assuming DRAM connected to all sixteen ports of the chip.
It was not used for this benchmark primarily because its assumptions are not compatible with the
existing board, which only has DRAM connected to four ports on the cast side of the chip. The
implementation of this benchmark also has the disadvantage of being harder to scale to dillerent
matrix sizes and numbers of tiles. However. 1t does demonstrate the potential advantage ol using
the static network and of a different board design.

For the 1024 x 1024 case, the static network implementation completes in approximately
142,000 cycles, while the memory network mimplementation takes approximatety 2,710,000 cy-
cles on the board (about 20 times as long) and 1,770,000 cycles on the simulator (about 12 times
as long). If we presume that placing DRAM on al Tour sides ol the chip speeds up the benchmark
by approximately a factor of four, then this benchmark shows the performance of the static network
to be about a factor ol 3 better than the performance ol the dynamic network.

48

5. Information and Knowledge Processing Benchmarks
g g

The three information and knowledge processing benchmarks defined for PCAs are pattern match-
ing. database operations, and graph optimization via genetic algorithm. The results for these bench-
marks are respectively defined in Sections 5.1, 5.2, and 5.3.

5.1 Pattern Matching

S.1.1 Algorithm Description

The pattern matching kernel involves overlaying a test vector a against a library of patterns of
length N, and computing the mean square error. MSE. that quantilies the degree to which these
two vectors match. Belore the two profiles can be overlaid. they may need to be shilted in range
to the left or right and the magnitude of the profiles needs to be scaled to match. The optimal shilt
and gain values can be found through brute force by computing the MSE for cach combination
of shift and gain values. then taking the minimum MSE. However, by noting that the MSE 1s a
parabolic function of the shift and gain, we can find the optimum shift and gain values at the global
minimum by first linding the optimal shilt. then finding the optimal gain value.

5.1.2 Mapping

The pattern match kernel can casily be mapped as a threaded kernel due to its underlying data
parallelism. Since a MSE will be computed for each pattern template that matches against the test
pattern, we can take advantage of that by replicating the pattern match kernel onto all tiles. Data
will be distributed accordingly (see Figure 36 below). In detail, the Raw processor is divided into
Tour quadrants or compute units. Each compute tile will retain a copy of the test pattern. The
library patterns, which will be evenly distributed across the four compute units, are streamed into
the Raw processor from the north and south ports of the four corner tiles. Each unit is responsible
for computing the MSE for a quarter of the library patterns. After a tile has finished processing its
share. the tiles local minimum MSE will be sent to its corresponding corner tile. The corner tile
will then determine the tocal MSE for the quadrant and send it to tile 0 to find the global minimum.
The processing is concluded by sending the index of the closest match out from the west port of
tile0.

5.1.3 Implementation

The pattern match Kernel is divided into two stages: range shifting of the test pattern and range
and magnitude shifung of the library patterns. Part of the code was parallelized to utifize the
four-stage FPU pipeline. In addition, alter acknowledging the base 10 power and the logarithmic
functions are the bottleneck ol the kernel, we have implemented a floating point version of the two
functions by unrolling their corresponding Maclaurin series [23].

5.1.4 Results

Figures 37 and 38 show the throughputs and efficiencies in Mflop/s and percent, respectively.
obtained for this kernel by varying the pattern length on the 4x4 tile Raw board and the 8x8 ule

49

test pattern, Vhbrary patterns

2 8 Input

0 |
1510 1 2 3 4
<
[Pl
Output
o il il
N =l
14 4 5 6 7 5
% 9 10 " 6
12 | 12 13 14 15 3

11 10 9 8 ‘

Figure 36, The pattern match kernel mapping. The mapping for one quadrant is shown
in detail. The mapping for each of the other gnadrants is similar.

simulator. The cycle count 1s averaged over two trials. The averaged throughputs are 322 Mflop/s
and 1240 MRop/s for the board and simulator results, respectively. When running in serial mode,
memory usage for this kernel is relatively large due to the Tact that we have to store all the library
patterns on one processor. However, when the kernel is distributed across multiple tiles, the amount
of memory usage 1s kept well below the cache boundary. The reason for this effect was that each
library pattern was streamed into a tile and discarded once 1t has finished processing. Essentially,
only one library pattern is kept in the cache of a tile at any given time. Thus, the amount ol memory
required for the kernel is solely dependent of the length of the patterns, and is independent ol the
number of patterns being matched. The length for which the data will spill over the cache 1s:

32 kByte/(4 byte/pixel) /4 = 2K pixels (43)

Pattern lengths larger than 2K were not benchmarked. For pattern sizes larger than 2K, nu-
merical errors make single-precision implementation of the kernel impractical. Nonetheless, the
benchmarked data sizes still do not exhibit behavior consistent with exceeding the size of the cache.

Since data are always available in the cache, the stability of the kernel is expected to be rel-
atively high, and the performance shown in Figures 37 and 38 clearly illustrate this elTect. Also
supporting this fact is the 3.8x! speedup in throughput for quadrupling the number ol tiles. The

'Computed by dividing the mean thronghput of the 8 x 8 simulator results by the mean throughput of the Raw

board results.

50

Pattern Match Throughput, 512 Library Patterns
1600 - 5 r . o T

= = - 8x8 Simulator
~—— 4x4 Raw Board

1400+ i

1200+ 1

1000+ 4

800 1

600 1

Throughput (Mflop/'s)

400 1

0 n L . L n . .
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Pattern Length

Figure 37, Pantern warch throughpur on Raw with 512 library patterns.

Pattern Match Efficiency, 512 Library Patterns

25¢ - - -8x8 Simulator |1
~——— 4x4 Raw Board
210 B h
I}
<15t 1
>
o
=
2
2
w10t 1
5k L
0

N N N 1 s . . .)
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Pattern Length

Fignre 38, Partern match efficiency on Raw with 512 library panterns.

N

speedup is a little below linear, probably due to the Tact that the patterns have to travel longer to
get to the mner tiles. Overall, the pattern match 1s a very stable kernel.

5.2 Database Operations

5.2.1 Algorithm Description

The Database kernel benchmark measures the performance ol database operations n the con-
text of a tracking application that stores track information in a database [11]. During a discrete
time wnterval, or cycle, the tracker application receives target reports from a radar and searches
the database Tor all associated track records. The tracker apphcation may also direct the database
to insert new tracks based on target reports that are not associated with any current tracks, and to
delete specilic tracks.

The database interTace therelore receives a stream of instructions from the tracker application in
the form of search, insert, and delete operations. Each of these operations are performed on track
record indexing structures: the benchmark does not actually alter the contents of any particular
track record. nor does it maintain the data associated with the records. Within the database. the
following values are stored in each track record index structure: p, a track rvecord pointer value
used by the tracker application to focate the track record data: and . and y. coordinate values for
the target within an area or grid. The output Irom the benchmark is a set of record identifiers, or
track record pointer values, returned from search operations.

The Database Operations are formatted in the following manner:

'S.(.”"('l] ‘l.llllll 'l'TIl/M.I‘ .l/”l”l .l/”Ill.l"
attempts to locate all track records within a specitied range of a particular (.. y) coordinate pair:
mserl ry,
creates a new track record index structure within the database for a target detected at location
2, y). and finally,
delete x oy,

deletes a specific track record from within the database.

5.2.2 Mapping to Raw

Figure 39 illustrates how the 1 x 4 Raw chip is used to perform Database Kernel benchmark
operattons. The 16 tiles of the Raw chip are divided into a Master tile. an Insert tile. and 14
Search tles. The Master tile is responsible Tor performing off-chip 1/0. distributing search. insert,
and delete instructions appropriately, and collecting track record pointers returned from search
operations. The Insert tile maintains a hst of available record pointer values, adding and removing
pointer values for insert and delete operations respectively. Finally. Search tiles contain binary
trees that hold track record index values. These tiles are responsibie for searching the binary trees
during search operations and returning valid record pointer values for records matching the search
criteria.

‘N
ro

Figure 39, Usage of a 4 x 4 Raw clip for performing Darabase Operations. The Master
tile (tile O, in green) distributes instructions and collects track record pointer values returned
Srom searches. The Insert tile (tile 1, in red) mainiains record pointer values. Finally, the
Search viles (tiles 2-15. in blue) maintain binary trees that contain indexing structures for

ack records.

5.2.3 Implementation

The following sections give a description ol the implementation of the Database kernel bench-
mark for the Raw processor. Al communications described in the following sections are performed
using Raw’s static network.

Initialization and Timing

The Database benchmark performs all 1/0 via the northern port ol the Muaster tile (see Ap-
pendix A, B). Data set parameter information | 11] is passed into the Master tile and distributed
to the remaining 15 tles. All tiles receive the data set parameters and allocate any necessary data
structures.

A Matlab instruction generator creates insert instructions to mitially populate the database.
The Matlab instruction generator also generates the search, insert, and delete instructions for the
benchmark. Initiahization and benchmark instructions are input into Raw and executed in the same
manner: the methods used are described in the following sections. The Master tile begins timing
once the intially placed targets, set I”, are inserted into the database. The Master tile stops execu-
tion after a set number of instructions are performed for a predefined number of cycles. The Master
calcutates the time taken to perform the benchmark, and outputs the time to the PCA Testbed.

Search Tile Data Structures. Each Search tile holds a binary tree | 1] that is used to store
track record information. Record information is stored in the binary trees using the target's «

coordinate as the key field.

(9]
‘09

Search Database Operation

Figure 40 shows the data flow patterns for performing search operations on Raw. The search
Parameters, Toins Lmazs Ymins aNd 1,4, are distributed from the Master, west—east across the top
row, then north—south down columns of the chip. Each Search tile receives the search criteria and
parses its binary tree for any track record matching the criteria. Al track record pointer values, p.
for tracks that match the criteria are returned to the Master north—south, then cast—west. Search
criteria 1s met for a track record with (. y) coordinate values if

By = 2 S i and Ymin < Y < Ymaz-

X X

min’'" max?®

ymin Y max

(A) (B)

Figure 40. Data flows for performing the search Database Operation. Subdiagrant (A)
shows the distribution of the searcl values. Subdiagram (B) shows the dara for the return
information sent from the Search tiles. Each Search vile will return eacli track record pointer
value for records that watcl the search criteria.

Insert Database Operation

Upon receipt of an insert instruction, the Insert tile reads the next available track record pointer
value from its memory. This value, p. along with the (. y) coordinate values supplied with the
insert instruction are sent to a Search tile that inserts the values into its binary tree. Track record
index values are inserted into Search tiles in a round-robin fashion over tiles 15:-1:2. Figure 41
shows example data flows for four insert operation scenarios inserting into tiles 15, 9. 6, and 3,
shown in subdiagrams (A), (B), (C), and (D) respectively. In general, for tiles 2 and 3. found
row 0, the values p, &, and y. are passed cast to the chosen Search ule. For tiles 4 through 15,
or tiles not found in row 0, the value p is passed from the Insert tile west to the Master tile, then
values p. . and y are communicated south and then east to the appropriate Search tile.

Performing the insert operations m this manner allows multiple insert operations to be per-
formed in parallel. Each insert operation requires the allocation of memory as a new node is added

() (D)

Figure 41, Example dara flows are shown for performing insert Database Operations.
Track record index values are inserted into Search tiles in a round-robin fashion over tiles
15:-1:2. Examples are shown in subdiagrams (A), (B)., (C), and (1) for inserting record index
data into search trees on tiles 15, 9, 6, and 3 respectively.

to the binary tree. As one Search tile is performing the allocation, the Master tile will assign insert
operations to the remaining Search tiles to be performed in parallel.

Delete Database Operation

Figure 42 shows the data flow required to perform a delete operation. Subdiagram (A) shows
the distribution of the instruction and (.z, y) coordinate values for the corresponding track record to
be deleted. Subdiagram (B) shows the resulting communication as the track record pointer value,
p.is returned to the Insert tile to be remnserted into the list of available pointers. When the Search
tiles receive the (i, y) coordinate values, each tile searches its binary tree for the corresponding
record. If a Search tile locates the record in its binary tree, the pointer value, p. is returned to
the Insert ule. Otherwise, the tile sends an invalid pointer value that is ignored by the Insert tile.
Invalid values are sent to maintain the structured communication model that is required from using
the static network for communication.

‘N
N

(A) (B)

Figure 42, Pata flow for perfornung the delete Database Operation. Subdiagram (A)
shows the distribution of the track record values for the record 10 delete. Subdiagran (B)
shows the data flow for the return information sent from the Search tiles. The deleted record’s
pointer value is returned to the Insert tile.

5.2.4 Benchmark Results

Figures 43 and 44 show the performance results for the Database Operations benchmark run on
the 4 x 4 Raw Handheld board. The results were generated by running 100 cycles, performing 200
search operations, 150 insert operations, and 150 delete operations per cycle, while varying the
size of the database. For these data set parameters, Figure 43 shows the throughput in transactions
per second, where a transaction 1s defined as a search, insert, or delete operation. Figure 44 shows
the fatencies measured for each test.

In Figure 44 an increase in the stope of the fatency curve is seen somewhere between database
sizes of 10K-20K track records. To examme the causes of the increased latency. we measure the
performance of running only search operations. This is done because the search operation is the
dominate operation in terms of workload and communication for the database sizes plotted n
Figures 43 and 44. Results for running 100 cycles, performing 400 search operations per cycle is
plotted i Figure 45. A more dramatic increase in the slope of the fatency curve is shown in this
figure. For a database size of 10k records, we see that,

jlse s A Byl.c.\ el = 32 KB (Size of binary tree on cach Search ule).

14 Scarch tifes

As the size of the database approaches 16k records, latencies increase as the size of the binary tree

held on each Search ule grows larger than the size of the tile’s cache. The red and black dashed

lines in Figure 45 respectively show where search operations are performed on target records in

the cache of each ule. and where search operations begin to access data outside of the cache on
cach tle.

A Database Throughput
4 T T v T T

» 2
) w)
L g i

Throughput (transactions/s)
N

1.5 h
.]
0.5} 1
5) . . ; ; :
0 1 2 3 4 5 6
Size of database (records) x 10°

Figure 43, Fhronghput results are ploned Jor the Database Operations benchmark rim
on the 4 x 4 Raw Handheld board. For each test, 100 cveles were run, performing 200
searches. 150 inserts, and 150 deletes per evele on a grid size of 16 x 16 with a <4 x 4 search
area. See |11} for data set parameter derails.

Database Latency

70 T :
601
50
waot 1
Q
E
= 30}
20t
10 1
0 i . ; . . .
0 1 2 3 4 5 6 77
Size of database (records) x10°

Figure 44, Latency resnlts are ploned for the Database Operations benchmark rim on
the 4 x 4 Raw Handheld board. See Figure 43 for data set information.

Database Latency

4.5 T - T
4t]
851 J
3t J
L5t 1
g
E 4 1
151 1
1r J
——-= Measured latency
0.5 = = - Database fits in cache i
-~ Database does not fit in cache
0 : 5 :
0 0.5 1 1.5 2
Size of database (records) x10°

Fignre 45, Database latencies are plotied from nsing the 4 x 4 Raw Handheld board for
performing search operations only. Latency is ploned in solid green. Red and black dashed
lines respectively show where search operations are performed on rarget records in the cache
of each tile, and wherve search operations begin 1o access data outside of the cache on each
tile. For each test, 100 evcles were run, performing 400 seavch operarions per ovele on a grid
size of 16 x 16 witlh a 4 x 4 search area. See [1] for dara set parameter details.

5.2.5 Further Optimizations

The Database kernel benchmark implementation for Raw could benefit in performance from
improvement in the mapping and design of the benchmark, as well as further optimization of the
current design. One such mapping change would be to combine the functionalities of the Master
and Insert tiles, and perform these responsibilities on a single tile. The current Insert tile could
be used as a Search tile providing increased distribution of the target records and reduction of the
search operation workload per Search ule.

It may be possible to optimize the insert operation by using the dynamic network Tor commu-
nication®. While the current implementation does aHow for insert operations to be performed in
parallel, there are times where tiles that are in the process ol inserting a track record block the
transmission ol insert commands to other Search tiles. Using the static network requires the ex-
plicit programming and control of each switch processor, requiring cach Search tile to be finished
with its current instruction before proceeding to and passing along the next instruction to 1ts neigh-
bor. The dynamic network could be used to bypass working tiles, better utilizing cach Search tile
during a block ol insert operations.

The performance of the benchmark could also be improved by implementing a memory man-
ager for each of the Search tiles, similar to what was implemented for the G4 implementation of
the Database benchmark [10]. A memory manager could reserve a large pool of memory, dol-

hd -
“Al the nime of this report we have not evaluated the performance of Raw using the dvnamic network in such a
conlext.

ing out pieces upon allocation requests and reassuming responsibility tor pieces deatlocated by
the benchmark. Managing memory in this manner would signilicantly improve the performance
because each cycle performs insert and delete operations. For a large enough pool of managed
memory, each matching insert and delete operation would remove the necessity ol either a malloc
or [ree system call that requires hundreds of cycles.

Finally, the benchmark perlformance could also improve through the use ol more sophisticated
data structures. The binary trees used on the Search tiles could be replaced with red-black trees | 1]
as was used in the G4 implementation ol the benchmark | 10]. Using red-black trees would insure
that the search tree 1s balanced, potentially reducing tree traversal latencies involved in search,
insert, and delete operations.

5.3 Graph Optimization via Genetic Algorithm

5.3.1 Algorithim Description

Genetic algorithms |2, 4, 18] have become a viable solution to strategically perform a global
search by means of many local searches. The genetic algorithm used for this kernel benchmark
1s a fairly stmple version [11] that works by first randomly generating an initial population of
chromosomes representing a set ol possible solutions to an optimization problem. A matrix of
scores s also created that determines how “good™ a particular code is in a particular gene position
within a chromosome.

A typical genetic algorithm usually consists of two tasks: evalnation and selection. During
evaluation. the fitness ol a particular chromosome is determined. This score is used in the fol-
fowing selection phase. in which the new generation is created by selecting chromosomes from
the current generation. Typically, chromosomes are randomly selected with probability propor-
tional to a chromosome’s fitness score. Chromosomes are then potentially subject to mmtation, in
which individual gene values change to a randomly generated code. and crossover, where a pair of
chromosomes exchanges genes with one another.

A parallel version of the genetic algorithm |3] adds a migration stage between evatuation and
selection. During migration, certain chromosomes residing locally on each tile are copied to neigh-
boring tiles.

5.3.2 Implementation Features

In the Raw version of the genetic algorithm, each tile runs an independent instance of the
genetic algorithm with its own local pool ol chromosomes. The only time that tiles actualty com-
municate is during the migration phase. The algorithm proceeds in five steps listed below.

I. The chromosomes in the current generation are evaluated using the scoring matrix. The elite
chromosome, or chromosome with the highest score, is noted, and the scores are stored Tor
later use.

2. Two copies of the elite chromosome are maintained. One copy is lelt untouched between
generations., and the other is subjected to mutation.

3. The elite chromosome from a particular tile will emigrate to each of the tile’s neighbors.
Thus, each tile will receive between 2-4 chromosomes from its neighbors. Note that tiles

with less neighbors (such as the edge tiles) will have less immigrants and thus will have
more open spots during the selection phase.

4. The remaining spots in the new generation are filled in by randomly selecting pairs of chro-
mosomes from the old generation. The probability that a chromosome will be selected is
equal to 1ts fitness score divided by the total fitness of the entire population. Each gene in
a selected chromosome 1s subjected to mutation with a given probability. These pairs are
also potentially subjected to crossover, which involves randomly choosing a site along the
length of the two chromosomes and exchanging all the genes of the two chromosomes past
this point. Note that selection, mutation, and crossover are done simultancously in order to
minimize memory operations.

S. If there remains a leftover spot. it is filled with another copy of the ehite chromosome. which
is subjected to mutation. This occurs when the local population size minus the number of
neighboring tiles is odd and thus cannot be filted by pairs of selected chromosomes.

The parameters of the kernel. including population size, probability of mutation/crossover, and
fitness scoring, remain the same for any particular run of the kernel.
The number of chromosomes locally on each tile is calculated as follows:

global number ol chromosomes

(44,

locat number of chromosomes = max < 6, —
total number of tiles

The global number of chromosomes is specified by the data set. and the total number of tles 1s
dependent on the Raw chip (16 in the present 4 x 4 Raw chip). The effect of the max function
in equation (44) is to guarantee that each pool can at minimum hold the two elite chromosomes
and up to four immigrant chromosomes. The typical net effect, however. is that the global pool is
divided among all the tiles.

Each tile allocates two pools with sizes equal to the product of the local number of chromo-
somes and number of genes per chromosome: these pools hold the current and next generation
of chromosomes. In addition, each tile also maintams a copy of the scoring matrix, which maps
a particular code in a particular gene position (o a score, and uses it to calculate the fitness of a
particular chromosome. This matrix, along with all the other parameters, 1s propagated from tile
0. which is responsible for all the external 170, to all the other tiles. Finally, each tile maintinns a
scorecard which represents the actual scores of each chromosome in the current generation: this is
used during phase 4.

After a specified number of generations, the tiles propagate their efite chromosome back to the
northwest tile. This is done by performing a process similar to the one specitied above, except
maintaining only one copy of the elite chromosome i step 2 and not performing steps 4 and 5.

The random number generator used in this implementation is the same version of the VSIPL
random number generator | 17] used in the G4 version of the kernel [10].

5.3.3 Benchmark Results

Timing is performed on each generation as well as the finat propagation. The final propa-
gation’s time is amortized among all the
reported.

generations, and the mean time over all generations s

&
&

60

As in the G4 version of the kernel [10]. the genetic algorithm relies on a random number
generator to control the behavior of certain processes, such as crossover, selection, and mutation.
The scoring process’s memory accesses also depends on what a particular gene’s value is. Thus the
memory access pattern during one generation of the genetic algorithm is not completely sequential.
However, after scoring has occurred and a particular pair of chromosomes are selected, the values
are read and the crossovers performed in a pairwise sequential manner. That is, the accesses
alternate between the two patterns, but each pattern is read sequentially. Also, the memory accesses
to the new generation’s pool are completely sequential.

As a result, the effects of memory subsystem can be seen i the genetic algorithm’s pertor-
mance, as shown in Figure 46. Performance for the entire chip peaks at slightly over 500 MHop/s.
an efficiency of about 30%, until the the size of the two pools plus the scoring matrix and scorecard
exceeds the 32 kByte level-1 cache boundary. When the genetic algorithm exceeds cache capic-
ity, performance begins to drop. As the memory usage far exceeds cache, the genetic algorithm’s
performance asymptotically approaches about 178 MHop/s. or about an 11% efliciency.

x 10° Genetic Algorithm - Raw

55

w s

w n > n
LJ T T
L L 1 1

Throughput (flop/sec)

N

n
T

Al

1-5 1 -l
0 G 10 15

Memory usage (bytes) x10'

Figure 46, Throughput of the genetic algorithne benclhmark on the MIT Raw. The
nuniber of genes/population size varies from 10 genes/6 chromosomes per tile (~10.25
kByies) 1o 120 genes/30 chromosoes per tile (~145.43 kBytes). The number of codes = 250),
mmber of generations = 3000, P(mutation) = 0.05, and P(crossover) = 0.60.

ol

5.3.4 Further Optimizations

There are several optimizations that could have been done to achieve better performance on
this kernel. One simple optimization involves not re-evaluating chromosomes in later generations
whose score is already known by some tile. For example, the unmoditfied elite chromosome kept
between generations is currently re-evaluated every generation. In addition, tiles migrating elite
chromosomes could also send the score of the corresponding chromosomes, which increases net-
work traftic by one value per chromosome but saves the destination tife from traversing through
the genes of a chromosome and performing lookups into a score matrix. A further optimization
could make use of prefetching on the new generation pool to minimize the number of writes that
miss cache. This could mitigate the drops in performance at the cache boundaries. Similarly, it
is possible to reduce memory accesses further by ordering the memory reads necessary during
the random sclection of chromosomes. This could be achieved by generating and sorting all the
random numbers before performing the reads.

62

6. Raw Kernel Benchmark Observations

The previous chapters discuss detailed results Tor individual kernels. This chapter contains general
observations about Raw based on the observed results. We begin with a comparison ol the Raw
simulator to the Raw board in Section 6.1. Section 6.2 compares development ellort on Raw to
conventional processors. Section 6.3 summarizes throughput, stability. and throughput per unit
power results for the baseline kernel data sets on Raw, and compares the Raw results to previous
results Tor the G4 and Xeon.

6.1 Board-Simulator Comparison

Prior to delivery ol the Raw board in April 2004, MIT/LL used the cycle accurate simulator
for Raw as a means ol development and testing of the kernel benchmarks, as wetl as to obtain
intial performance estimates. However, experimentation has shown that the Raw board and the
Raw simulator yield considerably different performance results. In this section, we discuss these
dilferences and their causes.

Figure 47 shows performance plots Tor the QR decomposition kernel benchmark run on the
Raw board and the Raw cycle-accurate simulator [7]. A performance drop-ofl is seen when M/
(for an M x M imput matrix A) 1s equal to 64, simifar to the cache effects seen in results for the
G4 [10]. At M = 64, we see that,

61 rows x 64 columns * 8 Bytes per complex element = 32 kKB (Size of matnix ()),
and
64 rows x 61 columns * 8 Bytes per complex element = 32 kKB (Size of matrix R?).

Because the data is divided between two storage tiles, when M = 641 each storage tile holds 32k
of data. A performance drop-oft 1s seen at this point because, Tor larger values of M, (Q and I? will
no longer fit into the 32kB data cache contained in each of the Raw tiles.

Inferring Trom the cache effects seen in Figure 47 as well as an investigation into the Raw
simulator source code, we hypothesize that the memory model used by the simulator does not ac-
curately match that of the board, consequently producing the differences seen between the Raw
Board and the cycle-accurate simulator due to off-chip DRAM access delays. One possible cause
of the delays is that parameters used by the simulator do not match the specihcations of the board
(e.g. Raw clock speed. DRAM clock speed). Whatever the cause, the simulator uses inappropriate
estimates of DRAM write and read penalties for cache misses. Expermmentally adjusting the values
dramReadLatency and dramWrite Lateney within the simulator code' produced performance
numbers close to those attained from using the Board. Comparisons are shown m Figure 48.
For this plot, the values dramRead Latency and dramWrite Latency, which are usually set to
the values 6 and | respectively, were each set to 16, These results suggest that a near-accurate
estimate of the Raw Board's performance can be obtained by adding constant delays to DRAM
access penalties within the simulator. 1t should be noted that the values chosen Tor the variables

"I'he simulator is written in a language known as “bC™: the actual file thar was changed was in the subdirectory
btl/dev/dram.be.

63

QR: RAW Board, Simulator

-

T T T

=
©
;

o
)

=
&

o
wn

=4
'

=
w

Raw Board Results
- - = Raw Simulator Results

n 1 n 1

Efficiency (for 2x2 computation tiles)
o
=]

50 100 150 200 250 300 350 400 450
M, for an MxM input matrix A

©
)

Fignre 47. QR Decomposition results using the Raw Board and the Raw cvele-acenrate

simnlator:

-r T

QR: RAW Board, Simulator, Modified Simulator
1 . r ' . v v

bt
©

bt
)

o
~

o
=)

e
0

o
F

Raw Board Results
- - - Raw Simulator Results
—e— Raw Modified Simulator Resuilts

Efficiency (for 2x2 computation tiles)
o
w

1 I 1

50 100 150 200 250 300 350 400 450
M, for an MxM input matrix A

o
n

Figure 48, QR Decomposition results using the Raw Board. cvcle-accnrate simulator,
and the cvele-accenrate simulator with modified DRAM read and write penalties.

04

dramReadLatency and dramWrite Latency for Figure 48 were found in an experimental fash-
1ion. Other kernels with memory usage patterns different from the QR could expose other possible
DRAM delays requiring different modifications to the simulator. Therefore. further knowledge
and research into the simulator code and Board would be necessary to create a completely accurate
simulation model. For this effort, the majority of benchmarking work was performed on the board,
making a completely accurate model unnecessary. However, such a model could be a useful too!
for examining current limitations in the board design, and for determining requirements for possi-
ble future chips containing a larger number of tiles. Also, it may show the need for algorithms that
use better data and computation blocking to minimize cache misses.

6.2 Development Effort

In this section, we make comparisons ol the development effort required to achieve high perfor-
mance on Raw versus the effort required on the PowerPC G4. Briefly, achieving performance on
the G4 requires wning the code 10 the memory hierarchy and adding Altivec instructions. Achiev-
ing performance on Raw requires specializing code for each tile and writing code to communicate
among tiles. Tile communication code is assembly-language code and so is very tedious to write.

We quantily the amount of effort by comparing the lines of code required. This is in some sense
an unfair comparison, as hines of code do not directly translate to development effort. However, it
1s the best metric we have in the absence of actual time-to-develop statistics.

To begin with, we consider the implementation of the FIR filter on Raw. We have four im-
plementations available to compare. The first 1s straightforward, portable ANSI C code for the
frequency-domain FIR filter, available as part of the HPEC Challenge benchmark suite [6]. This
code 1s a radix-4 FFT-based implcmentation. We compare this code to the streaming frequency-
domain implementation described in Section 3.1. We also compare with an optimized single-tile
frequency-domain FIR filter bank developed by Jinwoo Suh of USC/ISI. This implementation 1s
capable of performing up to 16 FIR filter operations simultaneously. one per tile.

Table 2.
Lines of code for four FIR filter implementations.
Name Developer l Language 7i - [SLOC |
’ HPEC challenge benchmark | MIT/LL | ANSIC 400]
| Single-tile USC/ISI C.Assembly 1525
;j Stream FFT MIT/LL L(‘.As.scmbly.Ncl\\’ork 3450 |

We can see the large jump in code size required to implement the single-tile optimized version
versus the straightforward C code version. However, adding the code to make a multi-tile version
adds even more lines of code, more than doubling the code required for the single-tile version
(which was alrcady almost four times as large as the C version).

As another data point, we consider the implementation of the corner turn kernel. The AltiVec
implementation of this kernel was previously described [10]. The Raw static network implemen-
tation referred to in Section 4.4 can serve as a point of comparison, since these perform the same
operation. The G4 corner turn code including the AltiVec assembly language routines comprises
about 260 lines of code. By comparison, the Raw static network version comprises 4750 lines of

65

code. Of these, about 4000 lmes ol code are assembly language code used to route the data. The
Raw code is nearly a factor of 20 larger. This roughly corresponds to the fact that Raw can be
considered to have a Tactor of 16 times as many instruction streams as the PowerPC.

The AltiVec corner turn, though it imposes some limitations on data size. can be used with a
range of matrix sizes. About 3000 lines of the Raw static code are actually generated by a Perl
script and are matched to the specilic number of tiles on Raw and the size of the matrix. Automatic
generation of this code is clearly very desirable.

Certainly, the ideal tools for tiled architectures are not yet well-delined. 1t would be unrealistic
to expect mature versions ol such tools to emerge fully formed from an academic project like
Raw. However, by pointing out the amount of effort required to achieve high performance on these
architectures, we hope to motivate the expenditure of more time and effort on such tools.

6.3 Baseline Resuits and Platform Comparison

In this section, we summarize the performance of Raw on the PCA kernel benchmarks, and
compare with the performance of the Xeon and the G4. The parameters of the three chips are
summarized i Table 3. In particular, it is important to point out that the Xeon is implemented in
newer technology than the other two chips.

Table 3.
) ___Processor Parameters -) _
Parameter Raw G4 | Xeon Units
L Clock spu(l : 100 \0()Jr 780() - MHz
| Peak lhmu“hpul | I () 4] 11.2 | Ghop/s |
{()1 chip level-1 cache [16 x v: ‘zz" B _*_;T kbyte |
On-chip level-2 cache }L | j 75_]__2 | Kbyte
}O t-chip bandwidth 160] 1] 43 T Gbyte/s |
+I_ pical chip p(mlf - ‘ B '5 53] 74| \Y 11
LI_hnolooy wnualmn () 181 0. & | G131 mluon N
LCil p die size ‘ | 330 52 146 mm? |
- Transistors _ 8 105 108 | million

With one exception, the performance numbers we cite in this section are for the implementa-
tions described in this report. The exception is the FIR filter, where we made use of an optimized
single-tile implementation provided by Jinwoo Suh of USC/ISI East. When multiple filters are
avaifable to be distributed to each tile, this implementation gives good performance.

The original kernel benchmark description | 11] gave several baseline parameter sets, based
on real application parameters, for each of the kernel benchmarks. The throughput for the base-
line data sets for each Kernel is summarized in Figure 49. Throughput for the corner turn kernel
benchmark is given in Mbyte/s, while throughput for the database Kernel benchmark is given in
transactions per second. Throughput for all the other kernels is in floating-point operations per
second.

We compare the absolute performance of Raw to that of the G4 and Xeon in Figure 50. In
that higure, we include both actual throughput measured on the Raw board at 100 MHz. and scafed

66

RAW (100 MHz) Kernel Throughput x 10"
. . . T 400 -

700} @ . o
£ I Average -]
I Set 1 350} 3
B Set 2
6001 I Set 3 1
I Set 4 300} =
Z.SLQ
500} E
250 o |5
@ i J
c 2t
« 400} » 2
;g_ _2200 §
: = £ 15f
= 300} = @
150} 1 =
200 100} bl
100 sol 0.5+
0 0 0
FIR QR SVD CFAR PM GA e DB

Kernel

Figure 49, Achieved throughpur of kernels on defined data sets on the Raw board.

performance numbers for an improved board. For the improved board. we assume a 425 MHz
clock frequency (MIT's best estimate of the maximum frequency of the Raw chip) and lincar
scaling. The results are very impressive. The 100 MHz Raw is competitive with the G4 despite a
ax difference in clock frequency and a 2.5x difference in peak performance. The 425 MHz Raw
is competitive with the Xeon operating despite being from an carlier technology generation and
operating at a much slower clock frequency. In addition, Raw’s performance averages are more
consistent across kKerels than either of the conventional architectures.

In Figure S1 we compare the performance per unit watt for the Raw, G4, and Xeon. As dis-
cussed in the original kernel benchmark specilication, we consider only the power ol the processor
and not the power associated with other components necessary to put together a system [11]. This
is done because the number of type of such components vary with the system purpose and it is rea-
sonable to assume that the components might be similar Tor any processor employed for a specific
purpose. Performing the calculations using only the processor power exaggerates the importance
ol the processor but also highlights dilterences among architectures.

Raw compares very well to the other architectures in Figure 51, despite the fact that it is an
academic design that is not power-optimized. The Xeon does not perform well by this metric, as it
is designed for use in server environments rather than embedded systems. But Raw’s performance
is very close to that of the embedded G4 system. and on some kernels it outperforms the G4 in
terms ol throughput per watt.

Based on the throughput measurements, stability Tor each kernel can be calculated. The data
set stability, that is, the stability over all data sets for a particular kernel. is shown in Figure 52
for cach kernel, for the Raw, G4, and Xeon. On a per-kernel basis, Raw’s stability is similar to
that of the other platforms. It shows better stability Tor the SVD and genetic algorithm. and worse
stability for CFAR detection.

Also shown in Figure 52 is the stability over all the floating-point Kernels, that is. the minimum

67

Average Throughput x10°
1

4500 — 500 | 9
I PPC G4 (500 MHz)
S Xeon (2.8 GHz)
4000 [JRaw (100 MHz) g
[Raw (425 Mhz)
3500 1 7)
3000 1000 1 6 1
N
g
2500 G5
n » =
o 2 3
2 2000 2 2,4
= = o
[y
1500 500+ 3
1000+ 2
500 IR B
0 0 J 0 -
FIR QR SVD CFAR PM GA (6l DB
Kernel

Figure 50. Average thronghput for ecach kernel on the Raw board and on the Raw board
scaled to 425 MHz, compared to the G4 and Xeon.

Average Throughput per Unit Power
. . 80 ——

180 ns e 4000 - 9
B PowerPC G4
X
160 [xeon 70 3500
N Raw
140}
60 3000
120 =
50 2 2500 1
- - L]
= 100 © g:n
= a0 02000
0 (2 G
o 80 D
S = 2
= 230 S 1500 1
60 =
20 1000
40
20 10 500
0 0
FIR QR SVD CFAR PM GA pe

Kernel

Figure 51, Average throughput per uait power for cach keenel on the Raw board
compared to the G4 and Xeon.

68

G

0.9r

0.8

0.7t

05k

04+

0.3

0.2

FIR QR SVD CFAR CT PM GA DB AlIFP
Kernel

Figure 52, Achieved data set stability for kernels on the Raw board compared with the
G4 and Xeon.

achieved throughput for the Noating-point kernels divided by the maximum achieved throughput
for those same kernels (FIR, SVD, CFAR, pattern match, and genetic algorithm). Notice that
this number is much lower Tor each ol the platforms than the individual stability for cach kernel.
However, Raw has a higher stability over all the Hoating-point kernels than either the G4 or the
Xeon. The ratio between the best and worst performance on Raw is about 4 1o 1, whereas on
conventional architectures it is about 20 to 1. One way to iterpret this result is to say that Raw’s
tiled architecture can be more consistently used to achieve high performance across Kernels than
the SIMD instructions present on the G4 and Xeon.

The actual stabitity numbers are given in Table 4. where they are compared to the numbers for
the G4 and Xeon. Another interesting metric to compute that 1s an indicator of overall stability
is the geometric average ol the data set stabilities (the seventh root of the product of the stability
scores shown in Table 4). This metric gives an indicator of the machine’s stability over all kernel
types. For the Raw with the baseline kernels and data sets, the geometric average ol the data set
stabilities 1s 0.700. Corresponding numbers for the G4 and Xeon are respectively 0.677 and 0.490.
This also shows an advantage Tor Raw, though not as large as that shown by the Hoating-point
kernel stability.

In summary, it is worth observing that a 425 MHz version of Raw shown in Figure 49 is ex-
pected to do well both in terms of performance and performance per watt. The average performance
and average performance per watt for all three chips is shown in Table 5. While the G4 delivers
the best average performance per watt, and the Xcon delivers the best overall performance, Raw 1s
very close to the best in both categories. Combined with the knowledge that Raw also gives more
consistent performance than the other two architectures, this is a strong endorsement of Raw’s
design and capability.

6Y

Table 4.

Kernel stability numbers for the Raw, G4, and Xeon.

Kernel I Stability |
Name I Raw | G4 —'Xcoﬁw
"FIR “T0959 10759 | 0.878
QR 10934 | 0.956 | 0.924
SVD L 0.892 | 0.464 | 0.472
CFAR 1 0.737 | 0.864 | 0.971
CT 0.974 | 0.747 | 0.933
PM 0.981 1 0.958 | 0.819
GA 0.626 | 0311 | 0.238
' DB 10061 | 0.058 | 0.040
CAll floating-point kernels T R
IL(vFlR.SVD. CFAR. PM. GA) | 0.277 | 0.062 | 0.053 |

Table 5.
Average Performance and Performance Per Watt for the Raw, G4, and Xeon
[Clock | Average Average Throughput
Chip Rate | Throughput | Per Watt
Name | (MH2) (Mflop/s) (Mflop/s/Watt)
| Raw | F 1.5 | A 71
G4 500 0.37 71
Xeon 2800 1.53 21

70

7. Conclusions

We have presented a set of kernel benchmark measurements on the MIT Raw processor, an early
Polymorphous Computing Architecture. The results show that despite being an academic de-
sign, Raw is a scalable, Hexible architecture capable of delivering consistent high performance
and performance per watt. In contrast, our two conventional architectures show less consistent
performance and either high performance or high performance per watt but not both.

Our major arca ol concern for Raw is the programmability of the architecture. Optimizing
code for Raw is a very labor-intensive process. It takes approximately an order of magnitude more
code to program Raw for high performance than to program at an equivalent level on the PowerPC.
Tools to automate the development of high-performance code are sorely needed.

As more tiled architectures appear in industry and academia. high-performance programming
of these architectures will continue to be an issue. In our evaluation of Raw, we have shown
the potential of these architectures. We have also demonstrated techniques for high-performance
programming that are scalable to future, larger tiled arrays. We believe these will be a good
foundation for further work on these architectures.

71

APPENDIX A
Testbed hardware design

A.l Introduection

This appendix describes the design of the PCA high speed 1/0 (HSHO) system. This system is
designed specifically for the MIT Raw architecture with hopes that it can be casily extended to the
other architectures being explored by the PCA program. The testbed consists of three main parts:
the hardware, the irmware, and the software. Each of these parts are discussed i a section below.
Following this introduction, Section A.2 describes the hardware setup including a specification of
each hardware component and of the data flow on the testbed. Next, the software executing on
the host is described in Section A.3. Finally, Section A.4 describes the firmware designs of the
customizable FPGA components of the testbed.

A.2 Hardware Setup

The hardware portion of the testbed is made up of six major pieces: a computer to host the
WildStar I/PCA, a WildStar I/PC1 board. two WildStar Data Port-Euro daughter cards. the Raw
Handheld board. and a computer to host the Raw Handheld board. The hst below outlines the func-
tionahity of each of these pieces and their interfaces with other components. These retationships
are depicted graphically in Figure 53.

I. WildStar Host Computer — Connects to the WildStar H board.

o Interface to WildStar II: PCH 32 bits @ 33 MHz
e Processor: Pentium 4 @ 2.53 GHz

e Operating System: Redhat Linux (Custom Kemel 2.4.20 modified for WildStar PCI
driver)

e Compiler: GCC 3.2.2

!J

WildStar Il PCl — Connects to the host and to the WildStar Data Port daughter cards.

e Interface to host; PCI 32 bits @ 33 MHz
o Interface to Data Port; 2 x 153 bit MICTOR connector
e Processors: 2 x Virtex H 6000-5 FPGAs for custom processing

e Memory: 12 Mbytes DDR 11 SRAM (6 ports/PE)

SIOBEXS s1G £S5 |
HOLIIN _
- [tid SZE . L i
-I 0sADx | sia ozive ()
=28k | | 0348 -
| Wod ejeq Jeispiim g
Y

o5ADX | S0 o2

Z3d8
|

M—Mu.ﬂwﬂzm‘ 0SADN _ 510 0278 | oogaox | SEESL L

s yIed
o
19 ejep 25| EL
ur S1Q EIRP 75| 000€
Sigpauuog || X3UIp
uoisuedxy |
Playpuey Mvd LIN

Jd 1S0H mey

t3dd | | 3d0n

. mm_.Gx 50 02ivg . _
0348

0 Hod ejeq JeISplim

I WOy SG £S5

HOLIIW

3d WOy 54 £51

HOLOIW

.wl_ '

| (|
el 13d
ooog =
xXaul, THN EE SPa ZE
nxeun | | | i
510 7E Jajjonuol
10d

g ESL 03d m
ooog]
lhxewip |]

k- 12d 11 1RISPIIM -

Od 1SOH JeISPIIM

PCA testhed svstem components.

ieure 53.

s

74

3

4.

D

WildStar Data Port x 2 — Connect to the WildStar 11 board and to the Raw Handheld
board.

e Interlace to WildStar 11: 153 bit MICTOR connector to expansion FPGA

o Interlace to Raw Handheld: 5 x 38-bit MICTOR ribbon connectors

o Processors: 1 x Virtex 600E-7 and 3 x Virtex 100E-7 FPGAs

Raw Handheld — Connects to both WildStar Data Port cards.

o Interface to each Data Port: 190 bit MICTOR connector
e Interface to Raw: 64 bits in + 64 bits out + 24 control bits

e Processors: 2 x Virtex 11 3000 expansion FPGAs + Raw [6-tile processor @ 100 MHz
Raw Host Computer — Connects to the Raw Handheld board.

e Interfuce to Raw Handheld board: USB 2.0
e Processor: Pentium 4 @ 2.80 GHz
e Operating System: Redhat Linux (Custom Kernel 2.4.26 moditied for USB 2.0 driver)

o Compiler: GCC 3.2.2

The HSIO can be used to both send and receive data. The information flows through the HS10
touching all of the hardware components described above, except for the Raw Host computer. This
path is explained below:

0.

8.

. The data are generated on the host.

The data are transmitted to the WildStar 11 and placed in the board’s local memory through
the two processing elements (PEs). The PEs are the start and end points Tor the data paths in
the I/O system.

The host gives the WildStar 11 a signal beginning data transmission from each PE to its
respective Data Port daughter card.

The daughter cards pass the data to the expansion FPGAs on the Raw Handheld board.

The expansion FPGASs send the data to the Raw and forward the results back to the Data Port
daughter cards.

The daughter cards, in turn, pass the results back the WildStar PEs.

The WildStar PEs store the results and wait Tor the signal from the host that the benchmark
has completed.

The host software gathers the results Irom the WildStar. verifies their correctness, and gen-
crates performance statistics.

A.3 Software Design

Software is executed on both the host and the Raw processor. This document discusses the
control for the High Speed 1/0 System. A description of the overall testbed software can be found
in an accompanying appendix.

Host Software — Format data, download data, send control signals, upload results
e Language: C/C++

e APIL: Use the Annapolis supplied programming interface and driver for writing data to and
reading data from the board. The data transfer can be performed before and after the timed

test.
o Task I: Format test data.
e Task 2: Download data to the board.
e Task 3: Send “stream™ signal to the WildStar I1.
o Task 4: Await “done” signal from the Testbed software.
e Task 5: Upload results.

e Task 6: Format results and forward them to the Testbed software.

A4 Firmware Design

The firmware design refers to the design of the FPGA modules that are downloaded to the
WildStar 11 PEs, the Data Port PEs, and the Raw Expansion FPGAs. The firmware design com-
bines modules developed at MIT/LL, modules provided by Annapolis Micro Systems (AMS), and
modules provided by the MIT Raw group. In the figures below the off-the-shelf modules are gray
and the custom modules are white. In general. the FPGASs are configured to simply pass the data
from the memory on the WildStar 11 to the Raw and record the results that the Raw generates.
The FPGAs do not aid in the computation of the benchmark. Each of the firmware designs are
described in more detail below:

I. WildStar Il PE — Interface to the memory controller and send data to the Data Port daugh-
ter card. See Figure 54.
o PCI Interface @ 33 MHz (Annapolis): Manage the communication with the host.

e Memory Interface @ 120 MHz (Annapolis): Manage the memory transfers between the
on board RAM and Custom Design I. Two memories (one for send and one for receive)
are used for each port on the Raw. This leaves two of the six memories unused.

o Custom Design 1 @ 33/120 MHz: Stream data from the memory controtler to the
external interface. Make a clock transiton from 33 MHz (PCI) to 120 MHz.

76

PEO .

Virtex Il 6000-5 :

[]

*

Custom ’

AMS Design 1 .

—1+— Memory -

Interface .

.

.

5 AMS AMS 3
Co:l'f:)lller PCl External —tm————s
S5 Interface Interface o

3 MHZ MH ,

Figunre 54.

WildStar Il Processing Element (PE) 0. PE I has an identical design.

o External Interface @ 120 MHz (Annapolis): BufTer and send data through MICTOR
connector to the daughter card.

2. Data Port I/0O PE — Pass the data along. See Figure 55.

e External Interface @ 120 MHz (Annapolis): Send to and receive from the WildStar 11
PE via the external MICTOR connector.

e Custom Design 2 @ 120 MHz: Perform any formatting necessary. Send data to and
receive data from the External Interface to the Raw Handheld.

e External Interface @ 120 MHz (Annapolis): Send to and receive from the Raw Hand-
held via the smalf MICTOR ribbon connectors.

Figure 55,

3 1/0 PE S
B Virtex 600E-7 o
L] L]
* *
* *
5 Custom e
= Design 2 =
. .
. .
.] l .
. AMS AMS .
. — External External —t——————
. o Interface Interface ofthe: |
. W Mz MHz a

WildStar Data Port Daugluer Card VO Processing Element (PE).

3. Raw Handheld Left and Right Expansion FPGAs — Interface the High Speed 1/0
System to the Raw Processor. The data will only be transmitted via Tour ol the the Raw static
network ports. The /O system will stream and retrieve data from both expansion FPGAs on
the Raw Handheld board giving an elfective data input and output rate of 8 words per cycle
at 100 MHz (3.2 GBytes/s). with each expansion FPGA working at half that rate. See Figure

50.

[E

e Custom External Interface @ 120 MHz: Send 10 and receive from the Data Port daugh-
ter card via the small MICTOR ribbon connectors.

e Custom Design 3 @ 120 MHz: Transmit to and receive data from the Speed Gasket
module.

e Speed Gasket @ 100 MHz (Raw Team): Interface with the Raw static network. Mulu-
plex and decode the values presented according 1o the control signals from the custom

design.

» Raw LE

: Virtex I 3000-4

L]

.

= Custom :
: mit raw
L]

[]

. | T

. Custom MIT

. b~ External Speed

e 15000 Intertace Gasket 2

= MHZz MIH.:

Figure 56, Raw Handheld Left Expansion FPGA. The Right Expansion FPGA has an

identical design.

A5 Summary

The PCA testbed HSIO intertace allows input data to be sent in a streaming mode from the host
computer 1o Raw and results to be sent back in the same fashion. It uses a combmation of custom
firmware on both the Annapolis WildStar 11 board and on the MIT Raw board 1o achieve this goal.
The system described here has been implemented and was used to produce the Kernel results given
in this report.

78

APPENDIX B
Testbed software design

B.1 Introduction

The goal of the Polymorphous Computing Architecture (PCA) project is to evaluate new “‘mor-
phing” computer architectures. Through the use of a variety of benchmarks and mterfacing hard-
ware, testing can be done to determine the benefits of these new processors. In order to facilitate
the enormous task at hand, however, there is a need for a standard software interface to allow
testing to be done easily on a variety of platforms.

This appendix describes the design and implementation of software used to mnterface a host
computer with an architecture under test. The interface allows a program running on the host com-
puter to communicate with a specific platform under test, sending it code and data and retrieving
the results of an execution. The software is based on architecture modules that share similar -
terfaces so that they can be swapped in and out, making it casy for programs to be launched and
tested on a wide variety of platforms with few modifications to actual code.

The first section is this introduction. Section B.2 is a quick-start guide to allow users to pick
up the standard testbed configuration quickly and use it with their code. Section B.3 goes over
the general design and introduces some of the concepts used by the testbed. Section B.4 covers
in more detail the interactions between the tasks and the testbed. Finalty, Section B.5 covers the
interactions between platforms and the testbed.

Some commonly used terms are defined below:

Application MATLAR code that, in this context, contains tasks that are launched through the
testbed.

Platform An environment (hardware and software) on which a task can run.
Platform interface object A MATLAR object used to interface with a given platform.

Platform map A file used by the testbed to determine which platform interface objects to use with
which platforms.

Platform name The name given to a particular environment; this name is used to refer to specific
platforms in both the task and platform maps.

Task A MATLAR script or executable binary that is used and launched on various platforms.
Task map A file that the testbed uses to determine what tasks are available, where they should be

run, and what options are used for a particular task/platform pair.

B.2 Tutorial
This section gives a quick introduction to using the PCA software testbed given the standard

testbed and PCA kernel distribution configuration. This should allow a user to get the testbed
running relatively quickly.

i3

<tb-root> will designate the path to the PCA testbed software: unless you are using a cus-
tom installation of the testbed, <tb-root > shouldbe /data/pca/testbed. <task-root>
will be used to designate where you choose to mstall the PCA kernel distribution. Finally,
<task-path> will denote the path holding the kernel code you write.

B.2.1 Set up the task hierarchy

I. Get a copy of all the tasks:
Latest: cvs -d/data/cvsroot co —-d<task-root> pca/tasks
Stable: cp -rf /data/pca/tasks <task-root>

(%]

Install your own copy of Raw’s Starsearch software. The install should be located at
/data/pca/raw_dist/starsearch.tar.gz.Consult New_Users.README
within the Starsearch directory to finish setting it up. Finally. edit
<task-root>/config.mk and set the variable STARSEARCH PATH to point to it.

B.2.2 Creating a new task
1. Add your new task to the task hierarchy.
e Create <t ask-path>, which should be of the form
<task-root>/name_of_kernel/platform_name.

e Add your task to <t ask-root>/task.map. Add your entry between
.begin(taskoptions) and .end(taskoptions). Your entry must follow
this format:

<kernel name> <platform> <options>

Valid options and examples are documented i the task mapping. At the very least. you
want path=<task-path> specified. If <task-path> is specified as a relative
path, 1t 1s relatve to the location of the task map. This 1s also where you want to put
setupInand setupOut options if you are using the MIT Raw processor.

e By convention, all code retated to this Raw kernel (including any refated MATLABR
scripts) are placed in <task-path>.

2. Setup the build system.

e Get a copy of depend.mk. which is needed to build and launch your task. tor the
MIT Raw processor:

cp <task-root>/templates/dependRaw.mk
<task—-path>/depend.mk

Afterwards, open 1t and follow the documentation inside to customize it accordingly.
e Finish up the setup by typing:

cd <task=woot>; .Ysetup.pl-<Cbh—rgoits —f

80

B.2.3 Running the task

1. In MATLAB, create a testbed object by calling its constructor. Make sure the testbed is in the
path.

addpath <tb-root>
tb = Testbed;

2. Runyour task with the testbed object as the hrst parameter. For a function t askFunction ()
that takes in two values and outputs two values, you would call it in the Tollowing way:

[eutl,; eut2] = taskFumnctioni(tl, inl; in2);

IT timing needs to be done, 1t is called as follows:

4

1, out2, time] taskFunction(tk, inl, in2);

[oy g
Lou

IT everything is set up correctly, you should see your task run.

B.3 Overview
The testbed is designed to Tulhill the following requirements:

I. Allow tasks to be launched on different platforms from MATLAB. whether directly or in an
apphcation.

|39

Make it easy to change where tasks are launched.
3. Provide Tacilities that will make it easy to time tasks.,

4. Make the testbed extensible, e.g. make it easy For platforms to be added.

&

The testbed achieves these goals by acting as a common layer between the MATLAB application
which launches the tasks and the various underlying platforms on which the tasks run. For each
platform, an mterface object exists that the testbed uses to faunch a task with the appropriate mputs
and outputs. These objects FolHow a standard API; thus, the testbed’s functionality can be casily
extended to other platforms. Tasks require minimal modifications to run on the testbed. and maps
make 1t easy to change where to launch a task or what options to use.

The following steps (corresponding to Figures 57 and 58) describe the process ol launching a
task on a remote plattorm. Relevant sections are listed in brackets.

I. The user application reaches a invocation for a particular task, This call takes an instantiated
testbed as an extra parameter. |Section B.4.1]

2. The testhbed intercepts the call and looks up the platform specilied Tor this task. [Section
B.4.2]

31

= 1. Application reaches a testbed call.

Platform List

Matlab Application

E RAW Interface

4. Reorganizes and sends the data

R o

v i
- O

use

F! UNIX Interface Q

4. Marshalls the data onto disk NF ‘
6. Reads in data from disk. I ‘ 5. Launch task on test platform.

Figure 57 The client side of the testhed software shown running the CFAR kernel.

Testbed on Host

E! UNIX Interface : 7. Loads and launches task.

6. Reads in data from disk

== RAW Interf
E3 nerface pmpEy O

HSIC JSB

6. Receives data from interface

"

8. Return value/timings are passed back through interfaces.

Fignre 58. The host platform’'s side of the testbed sofrware.

3. The testbed uses a platform interface object corresponding with that particular platform.
[Section B.5.1,B.5.2]

4. The platform interface object manipulates the data as needed for communication to the plat-
form. [Section B.5.3]

5. The testbed launches the task’s code on the remote platform. [Sections B.5.3]
6. The running task loads or receives the data from the testbed. [Section B.5.3]

7. Return values and timings are passed back through similar communication channels. [Sec-
tion B.5.3]

8. The testbed receives this and returns it to the caller.

B.4 Tasks

This section covers the interaction between the application’s tasks and the testbed.

B.4.1 User Application Requirements

A user uses the testbed by calling tasks in a testbed-specitic fashion. In order for data commu-
nication between the client application and the platform to work correctty, the application must be
running on a machine that can directly send data to and receive data from the platform. UNIX ma-
chines, the Raw simulator, and the Raw USB interface all use data files to communicate: thus, the
client and platform must be able to write and read data from a shared disk. The Raw High-Speed
1/0 interface (HS10, described in Appendix A) uses function calls to perform 1/0: thus, the client
application must be running on the machine on which the Raw HS10 interface 1s connected.

The user program must first create a testbed object by calling Testbed and assigning it to a
variable (e.g. tb Testbed). This sets up the testbed. including instantiating platform inter-
face objects. and loading the task map. 1f the task map changes, the testbed must be re-created to
reflect the change.

From this point. for every task that needs to be run, the user application calls the method with
the testbed object as its first parameter. For example, if the original call was

Targets = Cfar(C, Params}),
the call should now be
Targets Cfar(tbh, C, Params).

This allows the testbed to intercept the invocation and handle it accordingly.

bR A B bR B h R R AR BB B h AR B h b AR F B H AR A R E R B R R FE B BB h R |
I# TASK-PLATFORM MAPPING

L Nty Y
| .begin(taskplatform)

|Cfar RawSim rawhost

GenAlg Unix ville

.end(taskplatform)

RS R AR RS EREER SRR EEREREE RS EEEEREEREEEEEREEEER]
TASK-OPTIONS MAPPING

RS SRR ERREESEEEREEEEEEEEEESE S
.begin(taskoptions)

Cfar RawSim path=cfar/raw;
inPort=0,3,8,11; outPort=0,3,8,11
|Cfar RawUSB path=cfar/raw-usb;
inPort=12, 15; eoutPort=12, 135
’Ctir * inType=int32, float32; outType=int32; repeat=10

setupIn=setupln; setupOut=setuplut; verbaose=l

GenAlg Unix path=genalg/unix
GenAlg RawHSIO path=genalg/raw; inPort=0; outPort=15
GenAlg & inType=float32, float32; outType=int32;

setupIn=setuplIn; setuplut=setupOut; verbose=]
.end(taskoptions)

Figure 59, A sawmple rask map witlt two tasks: CFAR and Genetic Algorithm,

B.4.2 Task Map

In order for the testbed to understand what tasks are available Tor running, what options to
use, and where to run a particular task, the testbed uses a task map file. Every task that 1s run
on the testbed must be specified in the task map. By maintaining an external map tile. the actual
source code does not need to be changed n order to run tasks on a different plattorm or change
task metadata. By default, the testbed uses a task map either located on the MATUAB path or
in <task-root>/task.map. The following paragraphs will provide a brief summary of the
grammar used in the hle: Section B.6 contains the complete specilication including the detinition
of the tags used here.

To determine where to run a particular task, the map contains a mapping from each task to
some platform and hostname. These entries are contained within an area denoted by a
.begin(taskplatform) and .end(taskplat form). The format of each mapping is:

<TaskName> <PlatformName> <Hostname>

84

Note that the mapping is whitespace-dehmited.

The task map is also used to determine specific options and metadata corresponding with a
particular task and platform. For example, the user could specify that when the CFAR runs on
the Raw simulator, the task’s iputs should be streamed into ports 0 and 3. This area 1s denoted
by a .begin(taskoptions) and .end (taskoptions): each entry consists of a task, a
platform, and the platform-specific options for this task in the following format:

<TaskName> <PlatformName> <Options>

Note again that the components are whitespace-delimited.

Multiple-line entries should leave whitespace in the first column of each subsequent line. Task
options that should be aftiliated to all platforms (for example, the types of the inputs and outputs)
should be labelled with a * as the platform. Finally, comments i the task map are designed by
placing a # in the first column of a line.

Figure 59 shows an example task map. The specific supported options and needed metadata
are platform-dependent and are documented in the t ask . map included in the testbed distribution
as well as in Section B.5.4.

In addition to the task map, the testbed provides a method for setting/overriding the mappings
specitied in the task map at run-time:

testbed setTaskMap (testbed, task, platform, [hostname])

where testbed is an instantiation of the testbed, task is the name of the task, plat formis
the name of the platform to run on, and hostname is an optional parameter specifying which
machine to use. The testbed will use the task/platform options specified in the task map.

Timing

One of the requirements of the testbed 1s to be able to get imings from task executions. This
is accomplished by adding an extra return value in the invocation of a task. This extra return value
should not be reflected in the task map (e.g. as one of out Type’s values). For example, if

Targets Cfar (tb, C, Params),
was an untimed CFAR invocation, the new invocation would be

[Targets, Timings] = Cfar(tb, C, Params).

If Targetsisoftype float 32, the specified out Type should just be £1oat 32 regardless
of whether the first or second invocation of Cfar () 1s used.

B.4.3 PCA Kernel Distribution

The implementations of the PCA kernels were written to use the PCA testbed. These tasks
follow a relatively straightforward interface that may be useful for use in future tasks. See section
B.2.1 on how to obtain a copy of the PCA kernel distribution.

File Hierarchy

The included tasks are located in <t ask-root >, They are organized as subdirectories named
alter the task name. Within each task subdirectory, there is one subdirectory for every platform’s
unplementation.

Build/Launch System

The standard tasks mcluded with the testbed utihze a Make file system to stimphty buitding
and launching tasks. The following is a hist of liles used by the standard task structure:

e <task-root>/build.mk - The base Makefile used. All the standard tasks create a
symbolic hnk named Maket i Le in their tocal directories that point to this file, which in
turn links to the testbed’s standard remote execution system (see Section B.5.3). By linking
to this. all standard tasks share a common mterface.

e <task-root>/config.mk- A global configuration hle for all the tasks using build.mk.
This allows build Hags and other options to be specified at a global level.

e <task-root>/depend.mk - Each task for each platform specifies what files are needed
to build the needed executable. Depending on which platform is being used, the depend . mk
fhile may need to dehine different variables. For ease of use, standard templates for the testbed-
provided platforms (sce Section B.5.4) are located in
<task-rcot>/templates/depend<platform:>.

To further simplify this process, a setup script (setup.pl) is available in the task’s root
directory: this script sets up all the needed symbolic hinks for the tasks listed in the task map. This
script also affiliates the task distribution with a particular testbed instattation. Thus, to use a new
testbed distribution with an existing task distribution, one merely has to rerun the setup script and
telt it to set up the build system to use the new testbed.

By using this system ol Makef iles, the testbed casily builds and launches tasks. More in-
formation on how the actual standard platform mterfaces use this system is avaitable in Section
B.5.4.

B.4.4 MIT Raw: Data Reorganization

In order to achieve maximum efficiency on Raw-based platforms. the data may need to be
split up, interleaved with other parameters, and manipulated in various ways before being sent to
specific ports. To accommodate this, setupIn=<MATLAB function> and
setupOut=<MATLAB function> options exist for the task map. This option alows the user
to specify two functions, one which reorganizes the input and the other the output. These functions
are called right before iput is marshalled and after output is unmarshalted. The interface of the
iput setup function must be:

function out taskSetupIn(inData, ports)

86

where inData is a cell array of the passed-in parameters (not including the testbed object),
port s are the input ports being used, and out 1s a cell arvay where out {x} should correspond to
data going to input port port s {x}. As an example, calling Cfar (testbed, C, params),
inData{l} = Cand inData{2} = params. The port numbers are documented in
depend.mk file.

Several issues of note:

e Datais written out in a column-major format.

o I multiple input types are specilied, out {x} {y} will be serialized using the types one al-
ter another, repeating them once all are used. For example, if there are two types specified.
inType=int 32, float32,andtherearefourelementsout {x}{1},...,out{x} {4}
being senttoport ports{x},out {x} {1} will be serialized as type int 32, out {x} {2}
as float 32, out {x} {3} as int32 and out {x} {4} as float32. If out{x} i1s a
non-cell array, it will be serialized as the lirst type specilied. The testbed will output an
error message if the number of elements being sent to a specific port is not a multiple of the
number of types.

e 1o send complex data to the Raw, merely pass it back as one of the out 's values. The testbed
sends in complex data by terleaving the real and imaginary parts of cach element. Note
that the testbed uses MATLARB's iscomplex () Tunction to determine whether to send the
data in as real or complex numbers. It is advisable to ensure that the data sent is always
cither real or complex (see MATLAR'S complex () function to mark a matrix as complex
regardless of whether there is an imaginary part or not).

The interface of the output setup function must be:
function rv = taskSetupOut (fileData, ports)

where fileData is a cell amay where fileData{x} corresponds to output coming from port

ports{x}, ports is a listing of the output ports and rv is a cell aray where rv{y} should

correspond to the v return value ol the original MATLAB call. For example, il the original MAT-

LAB callwas (A, B) = Kernel (tb),rv{1l} correspondstoaand rv{2} toB. Again, add

the set upOut key to the appropriate entry in the task map (e.g. setupOut=taskSetupOut).
There ave several issues of note:

e The cycle count is notr counted as a return value. This means that the cycle count should be
returned as the n+ 1" return value il the function normally has n return values.

e The testbed currently only supports one output type. If multiple output types are specitied
Tor a kernel, it will automatically default to single-precision (32-bit) floating point. Make
sure that all output (including the cycle count) is of the same type.

B.5 Testbed

This chapter will detail the components ol the platform interface objects and the associated
platform map. All these files are located within the <t b-root > subdirectory. These objects are
used 1o Tacilitate the launching of tasks on and sending/veceiving of data to/from remote platiorms.

87

BT
PLATFORM-IFO MAPPING

| # platform interface options
BEERE BB R R BB E RS S H SRR R R s e R b 4
! RawHSIO RawIFO mode=hsic
’ RawUSB RawIFO mode=usb
RawSim RawIFO mode=sim
Unix 194D e, path=/usr/bin/X1l:/tools/gnu/bin
&

Figure 60. A sample platform map for a testbed that supports four different platforms.

B.5.1 Platform Map

The platform map is located in <tb-rcot>/platform.map. Each supported platform
contains a line in the platform map specifying the name of the platform, the actual MATLAR class
to use to interface with it. and platform-specilic metadata. Each entry must Tollow the Tollowing
format:

<PlatformName> <FlatformInterfaceObject> <Options>

See figure 60 for an example of a plattorm map and chapter B.6 for a complete description of the
grammar used, imcluding a definition of <Plat formName>,
PlatformInterfaceObject>, and <Options>. Note that multiple platforms may use
the same platform interface object.
When a testbed object is instantiated, each platform listed is constructed by calling by the histed
MATLAB object’s constructor. Thus, if new platform interlaces are created or the platform map
changed. a new testbed object must be created.

B.5.2 Platform Interface Objects

Platform interface objects Torm the basis ol the testbed. Through the use ol these objects. the
testbed is capable of running on any platform that has an associated object. Platform interlace
objects are MATLAB objects located within <tb-root>/pi fo that must have two methods de-
fined: a constructor and pi foRun () that runs a task using that particular object. The constructor
is passed a single areument: a structure lilled with the option keys and values listed in the platform
map. pifoRun () is called with five parameters:

I. The platform mterface object itsell.

2. A string containing the name of the task as specified in the task map and as called by the
user in MATLABR.

3. A cell array containing the arguments passed by the user during invocation,
4. A suucture contaiing the options specilied in the task map.

5. The name ol the host on which to run the task.

It returns the values returned by the given task, plus timing if that has been enabled.
By forcing all platform mterface objects to follow a standard API, it makes the testbed easily
extensible: a new platform can be interfaced by creating an obgect with the same API.

B.5.3 Common Functionality

The methods by which code is launched on remote platforms and data is sent and received
from a particular ptatform heavily depend on the platform itself. A platform interface object can
do whatever is necessary to perform the needed operation as long as it follows the APL However,
there is some commonly used functionality that can be shared between various platform interface
objects. Some of these have been provided by the testbed and are described below. Note that a
custom platform interface object need not use these: they are merely provided for convenience.

Remote Execution

It 1s expected that tasks will often be launched on different ptatforms and not on the same
machine that the application is running on. Thus, there is a definite need for remote launching
capability.

The testbed provides two shell scripts that help provide the needed functionality. They are
located in <tb-root>/pifoand are named runRsh.sh and runPlat form. sh. These two
seripts set up the remote execution as well as parse passed-m options and create the necessary
command-line to run the task.

In addition, a set of Make £ 1 lesare used in order to provide building and launching capability.
Together with the shell scripts, they provide the ability for platform interface objects to rsh nto
remote machines. communicate various options, and build/launch a given task. In order for a
platform interface object to use this, the task to be taunched must have a Make f i 1e that interfaces
correctly with runPlat form.sh. This can be ensured by linking to the testbed interface’s
Makefiles, which are located in <tb-root > and are named make<plat form>.mk. The
PCA Kernel benchmarks discussed in Section B.4.3 demonstrate how this interfacing 1s done.

Interprocess Communication

In order to facilitate 1/O with remotely launched tasks, the testbed provides two interprocess
communication objects, both of which are located in <tb-root >/ipc. This directory also con-
tains common functions used by these two objects. The i 1eI0 object provides file 1/0 serializa-
tion. Given some data, it generates a data file with a smail header that describes the data and allows
for proper unmarshalling. Note that data is written in column-major order. The RawHS IO object
utthizes the High-Speed /O interface and associated libraries developed to provide high-speed.
streaming 1/0 to the MIT Raw board. Both objects provide the same API function calls:

FileIO () or RawHSIO () - Constructs the appropriate 1PC object.

init10(ipc, 1in, out) - Inmtiaklizes the input and output accordingly. This should be called
once per task but does not need to be called every iteration.

sendIn (ipc, in) - Sends in the data into the kernel. This should be called every iteration.

89

data = recvOut (ipc, out) - Receives output from the kernel.

destroyIO(ipc, in, out) - Cleans up the I/O.

B.5.4 Provided Interface Objects

This section describes the standard interface objects that are provided by the testbed. They are
reference implementations for several platdorms of interest.
The following values must be defined for every task by all the interface objects:

path The path of the task; if a relative path 1s spectfied, it must be specified relative to the location
of the task map.

inType The input types. Valid values are int 32 and float 32.
outType The output types (not including the timing). Vahd values are int 32 and £ loat 32.
The following i1s an additional option supported by all interface objects:

repeat Number of tterations to repeat a particular task (default 1).

MatlabllFO

This object is used by the platform named Mat Lab. This interface is rather simple and es-
sentially just passes the call on to the appropriate MATLAB function. 1t also performs timing as
needed.

UnixIFO

This interface 1s appropriate for machines with UNIX-like mterfaces and with access to a
shared disk (such as Linux and Mercury). The platforms that use this object are named Unix
and Mercury.

Machines utilizing this interface generally share a shared disk (e.g. on NES) with the chient
machine. Thus, code is launched by merely using rsh to connect to the machine and launch the
task. Sending data 1s done by senalizing the data and writing it to a shared location, tfollowed by
launching the task with a pointer to the data liles. Output is done i a similar way.

Note that most kernels launched in this way are written in C++ and use the templated
KernelDemo interface to handle 1/0 and setup. This interface specities which public methods a
Kernel must have as well as providing support for timing and running multiple iterations. See
<tb-root>/include/KernelDemo.h for more details.

The Tollowing are additional task options supported by this interface object:

verbose Turn on verbose mode, i.e. show all output from using the testbed. O disables this, any
non-zero value enables it (default 0).

debug Turn on debug mode, 1.e. runs the appropriate debugger with the task. 0 disables this, any

o0

non-zero value enables 1t (detault O0).

clean Perform amake clean to clean up a path before building/launching. 0 disables this, any
non-zero value enables it (default 0).

90

RawllFO

il J rts, dataj; Simulator
¢ e i + Supports ports 0, 3, 8, 11. ‘ *
' ’ - - Testbed writes dala to Port 0 Port 3
disk, from which RAW * *
l software reads and loads
l inlo the simulator.

Port 0 Port 3

4 v ——»Q

Simulator ROM

t i
Port 11 Port 8
1 +
f * | i S it .dat”, e aat®, 1 ;I
Port 11 Port 8
T T — Port 15

. 3}_—» Port 14
High -Speed I/O Intertace
+ Supports ports 0, 3, 8, 11. L » Port 13
+ Testbed calls HSIO methods to
transfer data. usB =t Port 12
+ Supports ports 12 -15.
+ Testbed writes data to disk,

from which RAW software
reads and sends via USB.

Ly

Figure 61. Methods used to send data to the various Raw instantiations.

The platforms that use this object are named RawSim, RawUSB. and RawHSIO. This interface
is for use with the MIT Raw processor. rsh is used to access the desired machine. For Raws im,
this machine is used to run a simulator with the given code. To send and receive data, the simulator
uses bC code that can simulate an /0 device in order to communicate with its environment. The
platform interface object communicates then by writing the data to files and connecting these 1/0
devices to particular files and ports in the stmulator. Afterwards, these “devices™ are read m. For
RawUSRB. MIT-provided binaries allow us to launch tasks on the board as well as perform 1/0 using
a similar interface as the simulator. For RawHS 10, instead of using the simulator interface for 1/0,
we use a different High-Speed 170 interface.

Note that due to the distributed nature of the MIT Raw architecture, the RawIFO allows the
user to provide MATLAB functions in order to reorganize both the Raw’s inputs and outputs. This
also forces certain restrictions on the types of the outputs. Usage is discussed in further detail in
Section B.4.4.

The following are additional task options supported by this interface object:

verbose Turn on verbose mode, i.e. show all output from using the testbed. 0 disables this. any
non-zero value enables it (default 0).

debug Turn on debug mode, i1.e. runs the appropriate debugger. 0 disables this, any non-zero value
enables it (default 0).

91

clean Perform a make clean to clean up a path before building/launching. O disables this, any
non-zero value enables it (default 0).

inPort The input port(s) to use on the MIT Raw. The supported ports depend on the mode.
outPort The output port(s) to use on the MI'Y Raw. The supported ports depend on the mode.

setupIln The function used to reorganize input (data being sent from the MATLAB application to
the task). Valid values are any legal MATLAB function name.

setupOut The function used to reorganize output (data being returned from the task to the MAT-
LAB apphication). Valid values are any legal MATLAB function name.

metadata Indicates which parameter is metadata. This is used to support datasets on the Raw
platform but isn’t fully implemented. Avoid using this functionality.

The following are additional platform options supported by this interface object:

mode Specifies what mode to run the Raw interface in (sim for simulator, usb for USB. hsio
for high-speed 1/0).

In addition, because of the relative difficulty in programming the MIT Raw, the interface also
provides in pca . h some uscful functions/macros for programming the MIT Raw:

pca_test_done (x) - Equivalent to C's exit (x) function: x is the return value.
pca_tiles_side () - The number of tiles on the side of the Raw processor,
pca_get_x () - Gets the x-coordinate of the calling tile.
pca_get_y () - Gets the y-coordinate of the calling tile.
pca_get_id () - Defined to be

pca_get_1id() =pca_get_y () -pca_tiles_side () +pca_get_x()

pca_1init_switch () - Initalizes the switch processor: either pca_init_switch_pc ()
or this must be called beforve any switch calls (e.g. pca_set_switch_pc (),

(=

pca_barrier ()).

pca_init_switch_pc(label) - Initiahizes the switch processor and sets its PC to 1abel.
It 1s safe to use this function to set the switch PC at any time. Either this or
pca_init_switch () must be used before any switch calls.

pca_set_switch_pc (label) - Sets the switch PC to 1abel.

pca_barrier () - Sets up a barrier by which all tiles must reach before continuing. This
function changes the PC on the switch processor. Note that all incoming data should be
cleared from a tile’s switch before this is called.

92

pca_init_io (port) - Used to imitialize I/O at port port: must be called before that port is
used. This can be safely called from all tiles. port can either be a number or PORT_NW,
PORT_NE, PORT_SW or PORT_SE.

pca_init_io_dir (dir) - Used to initialize I/O in a given direction; dir is the bitwise-or
of NORTH, SOUTH, WEST and/or EAST.

pca_sync_io (port) - Used to finish up I/O at the completion of the task. This is commonly
caltled several times at the end of a kernel with the different ports used and is usually followed
by apca_barrier (). Make sure you read in all the data waiting at port; otherwise, 1/0
may not flush completely betore this call returns.

ca_sync_ilo_dir(dir) - Same as pca_sync_1io (). except takes mn a direction like
Y y |
pca_init_dir ().

B.6 Map Grammar

The testbed maintains a simple and consistent grammar to specily both the task and platform
maps, which are essential structures in the operation of the testbed. This chapter serves as a
reference for the grammars used in those files. Note that <Tag>* represents one or more distinct
instances of <Tag> objects, and parentheses are used for grouping and are not actually part of the
actual grammar.

B.6.1 Whitespace, Continuations, and Comments

<ws> 1s defined to be spaces and tabs. <EmptyLine> is one that is filled with zero or
more <ws> objects. Overly long lines can be broken mto multiple individual lines: each line
that contains <ws> in the first column is considered a continuation of the previous line. All other
non-empty lines must contain some form of text in the first column.

Comments are lines ignored by the testbed. Note that the # must be in the first column.

CommentLine := # Comment Text
IgnoredLine := <CommentLine> | <EmptyLine>
B.6.2 Options

Options are specified very simply as semicolon-separated <Key>=<valueList > pairs, where
<Key> follows MATLAB naming conventions and the <ValueList > 1s a comma-separated list
of <vValue> objects. which in turn must be valid MATLAB strings or numbers.

ValuelList := (<Value>,) *<Value>
Options := <EmptyLine>
| (<Key> = <ValuelList>;)* <Key> = <ValuelList>

B.6.3 Task Map

The task map contains two sections: one that represents the mapping of tasks to specific plat-
forms and hosts, and one that represents the options used for a particular task/platform paiv. The
following are lines that are legal in the task mapping and task option sections, respectively.

TaskMapLine := <TaskName><ws><PlatformName><ws><Hostname>
| <IgnoredLine>
TaskOptLine := <TaskName><ws><PlatformName><ws><Options>

| <IgnoredLine>

where <TaskName > must follow MATLAB naming conventions, <Plat formName > must fol-
low MATLAB naming conventions or be a *, and <Hostname > represents a legal hostname for a
machine. Note that <P lat formName> in the task map should match up to some <Plat formName>
in the platform map. If * s specitied as the <Plat formName >, those options are apphed to all
platforms. If, for a particular task, a specific key is detined for both a specitic platform and all
platforms, the values specified for a particular platform take precedence

Fually. we can specify the format of the entire task map from these constructs. Note that each
line should be separated by a newline.

TaskMap :=
<IgnoredLine>*
.begin(taskplatform)
<TaskMapLine>*
.end(taskplatform)
<IgnoredLine>*
.begin(taskoptions)
<TaskOptLine>*
.end(taskoptions)
<IgnoredLine>*

B.6.4 Platform Map

The platform map has a similar structure to the task map. This is the only legal line in the
platform map:

PlatformMapLine := <PlatformName><ws><PlatformInterfaceObject>...
<IgnoredLine>

<ws><Options>

where <PlatformInterfaceObject > follows MATLAB naming conventions.
We can use this hine to specify the format of the entire platform map. Note that each line should
be separated by a newline.

PlatformMap :=
<IgnoredLine>*
<Plat formMapLine>*
<IgnoredLine>*

94

B.6.5 Example

See Figure 59 for an example of a task map and Figure 60 for an example of a platform map.

perr
|
|

[

0.

9.

10.

REFERENCES

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. hutroduction
to Algorithms. The MIT Press, 2nd edition, 2001.

Lawrence Davis, editor. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
Yark, 1991.

José L. Ribeiro Filho, Philip C. Treleaven, and Cesare Alippi. Genetic-algorithm program-
ming environments. [EEE Computer, 27(6):28-43, June 1994.

David E. Goldberg, editor. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Van Nostrand Reinhold, New York, 1991.

Gene H. Golub and Charles F. Van Loan. Manix Computations. Johns Hopkins University
Press, 3rd edition, 1996.

Ryan Haney. Theresa Meuse, Jeremy Kepner, and James Lebak. The HPEC challenge bench-
mark suite. In Proceedings of the Ninth Annual High-Performance Embedded Computing
Workshop (HPEC 2005), Lexington, MA, September 2005.

Henry Hoffmann. Stream Algorithms and Architecture. Master’s thesis, Massachusetts In-
stitute of Technology, Cambridge, MA, 2003.

Intel Corporation. Intel Xeon Processor with 512-KB 1.2 Cache ar 1.80 GHz to 3 GHz. March
2003.

Jason Sungtae Kim, Michael Bedford Taylor, Jason Miller, and David Wentzlaff. Energy
characterization of a tiled architecture processor with on-chip networks. In International
Svmposinm on Low Power Electronics and Design (ISLPED 2003), pages 424—427, Seoul,
Korea, August 2003. Association for Computing Machinery.

James Lebak, Hector Chan, Ryan Haney. and Edmund Wong. Polymorphous computing
architectures (PCA) kernel benchmark measurements on the PowerPC G4. Project Report
PCA-Kernel-2. MIT Lincoln Laboratory, Lexington, MA_ January 2004.

James Lebak, Albert Reuther, and Edmund Wong. Polymorphous computing architectures
(PCA) kernel-level benchmarks. Project Report PCA-Kernel-1, MIT Lincoln Laboratory.,
Lexington. MA, January 2004.

Mercury Computer Systems. 500 MHz PowerPC 7410 Daughtercard product data sheet.
March 2002.

Jason Miller. Private communication, August 2004.

Motorola Semiconductor Products. AltiVee Technology Progranuning [nterface Mannal,
June 1999,

97

16.

20.

S
‘o9

Motorola Semiconductor Products. MPC7410 RISC Microprocessor Hardware Specifica-
trons, January 2002.

Rodric M. Rabbah, lan Bratt, Krste Asanovic, and Anant Agarwal. Versatility and
VersaBench: A new metric and a benchmark suite for flexible architectures. Technical
Memo MIT-LCS-TM-646, Massachusetts Institute of Technology Laboratory Tor Computer
Science, Cambridge. MA, June 2004.

David A. Schwartz, Randall R. Judd, William J. Harrod. and Dwight P. Manley. Vector, sig-
nal, and image processing library (VSIPL) 1.0 application programmer’s interface. Technical
report, Georgia Tech Research Corporation, 2000. hup://www.vsipl.org.

M. Srinivas and Lalit M. Pamaik. Genetic algorithms: A survey. IEEE Computer, 27(6):17-
26, June 1994,

Volker Strumpen, Henry Hollmann, and Anant Agarwal. A stream algorithm for the SVD.
Technical Memo MIT-LCS-TM-641. Massachusetts Institute ol Technology Laboratory for
Computer Science, 2003.

Michael B. Taylor, Jason Kim, Jason Miller, David Wentzlalt, FFae Ghodrat. Ben Greenwald,
Henry Holtmann, Paul Johnson, Jae-Wook Lee, Walter Lee, Albert Ma, Arvind Sarat, Mark
Seneski, Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant
Agarwal. The Raw microprocessor: A computational Tabrice for soltware circuits and general-
purpose programs. [EEE Micro, 22(2):25-36, March/April 2002.

Michael Bedlord Taylor, Walter Lee. Jason Miller, David Wentzlall, Ben Greenwald, Henry
HotTmann, Paul Johnson, Jason Kim, Jaumes Psota, Arvind Saraf, Nathan Shnidman, Volker
Strumpen, Matt Frank, Saman Amarasinghe, and Anant Agarwal. Evaluation of the Raw
microprocessor: an exposed-wive-delay architecture for ILP and streams. In Proceedings
of the 3 st tnternational Symposiune on Computer Architecture (ISCA 2004), pages 213,
Munich, Germany, 19-23 June 2004. IEEE Computer Society.

Charles F. Van Loan. Computational Frameworks for the Fast Fourier Transform. Society
for Industrial and Applied Mathematics, 1992,

Dale Varberg. Edwin J. Purcell. and Stephen Rigdon. Calculus. Prentice-Hall, 8th edition,
1999.

93

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Pubic reporting burden for this collection of information is estimated to average 1 hour per response. including the time for reviewing instructions. searching existing data sources. gathering and maintaining the
data needed. and completing and reviewing this collection ot information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense. Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Dawis Highway. Suite 1204, Arlington. VA 22202
4302 Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for fatling to comply with @ collection of information if it does not display a currently

valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2, REPORT TYPE
14 June 2000 Project Report

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Polymorphous Computing Architecture (PCA) Kernel Benchmark Measurements

on the MIT Raw Microprocessor

5a, CONTRACT NUMBER
FAS8721-05-C-0002

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
R.J. Haney, J.M. Lebak, M.A. Alexander, H. Chan, P.A. Jackson, E.L. Wong

5d. PROJECT NUMBER
1084

5e. TASK NUMBER
0

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MIT Lincoln Laboratory
244 Wood Street
I_exington, MA 02420-9108

8. PERFORMING ORGANIZATION REPORT
NUMBER

PCA-Kernel-3

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
DARPA/IPTO

3701 Fairfax Drive

Arlington. VA 22203-1714

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

ESC-TR-2006-063

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution 1s unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The DARPA Polymorphous Computing Architecture (PAC) program is a research initiative aimed at developing new computer
architectures with a ligh degree of tlexibility. Unlike current computer architectures that are rigid in natare, PCAs will have the capability
to adapt ("morph™) to match the problem being solved. This flexibility will allow higher overall systemy performance i a broad range of

apphcations.

MIT Lincoln Laboratory has defined a sct of kernel benchmarks for the PCA program. The kemel-level benchmarks have been chosen to
stress both computation and communication aspects of the architecture. The particular benchmarks chosen are based on the frequency of
their use in current and future applications. They are drawn from the arcas of signal and image processing, communication, and mtormation
and knowledge processing. Each of these areas imposes different processing requirements on the architecture in terms of operations

performed and memory bandwidth required.

This document describes a set of measurements of the PCA kernel benchmarks on a prototype PCA chip.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT
a. REPORT b. ABSTRACT c. THIS PAGE S-dn]c as rcp()r[
Unclassified Unclassified Unclassified

18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF PAGES

19b. TELEPHONE NUMBER (include area
108 s

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

